45

jQuerv

Servei d'Ocupacio
de Catalunya

JavaScript
i
jQuery

Omar del Rio Garcia

Aquesta actuacié esta impulsada i subvencionada pel Servei
Public d’Ocupacio de Catalunya (SOC) amb fons rebuts del
Ministeri d’Educacid, Formacio Professional i Esport i del
Servei Public d’Ocupacio Estatal (SEPE)

AT Generalitat
Y, de Catalunya

2 £ MINISTERIO)
DE EDUCACION, FORMACION PROFESIONAL
Y DEPORTES

SERVICIO PUBLICO
DE EMPLEO ESTATAL

MINISTERIO
DE TRABAJO SEP
Y ECONOMIA SOCIAL g

SERVEI PUBLIC
D'OCUPACIO ESTATAL

Servei d'Ocupacio
de Catalunya

2= mat@roin

CONTENIDO
[[a1dg oo [UT ool o1y F T TP PP P TP PO PRTOPRTO PR 6
Tipologias de lenguajes de ProgramaCionc.ieiueerieerieeniee ettt et sb e st e st e sateesabeesabeesabeesaneesareesaneess 6
Conceptualizacidn de las bases del pensamiento computacional...........eeecviieiecieiecciiee e 6
1T ol £ o1 ST OP PP PPP PPN 8
Un poco de historia SODIre JAVaSCIIPE......iiuiiiiiieie ettt st e s e s b e sb e eanee s 8
Diferencias entre diferentes NAVEZAUOIEScccueeeiiiiieieiiee st e e et e e st e e e st e e e eseeeessbeeeesstaeeeesseeessseeeans 9
Diferencias @ntre Java ¥ JAVASCIIPE ...ee rii ettt ettt ettt e st st e e e s bt e s e sbeeearee s 9
Qué necesitas para trabajar CON JAVASCIIPL ...cc.ueiiuiiiiieeie ettt ettt saee s b e e nee e 10
Diferentes versiones de JavaScript, los navegadores que las aceptan y SUS avances.cccceeeevveeeeiveeeeennnen. 10
SINTAXIS DASICA .ttt sttt s e st e et s bt e et st e e et sa bt e et e s bt e eabeesbeeeanee s 11
(00 T4 0= 01 =T T 1T P TSRO PP PO PPRPOTPTR 11
Formas de ejecutar SCripts de JAVASCIIPL ... i e e e e s e e e e e s s esabrr e e e e e e seennnnnes 12
EJECUCION QIr@CEA ..eeneiieiieeet et ettt ettt et e st e e bt e st e e e bt e s b e e s bt e sabeesaneesabeesnseesabeeaneenane 12
RESPUESTA @ UN EVENTO ...eeiiiiiiiiiiiieticc ettt e e s ae e e e s aran e e e s 12
Incluir ficheros eXterN0S e JAVASCIIPT......uuii et ecte et e et e et e e e str e e e etta e e seabaeeesataeeeesraeeennrenas 13
DEPUraCiON AeI COTIZO ...euuiiiiiiiiiiiiteee ettt ettt sab e st e st e st e e s bt e sabe e s bt e sabeesneesabeeenneenane 13
VATTADIES ..t s e sa e a e e et e e eer e es 15
Declaracion € INSEANCIACIONcc.eeiuiiiiieiietieiee ettt ettt ettt ebe e bt e b et e eabesaeesbeesbeenbeenseemteeneeebeenbeenbens 15
AMDITO dE Variabl@s —SCOPE-vvveeceeeeeee sttt ettt ettt s et st s e st s et es e s sttt st st et et et enenenens 16
VL g =] o] LT =4 To T o F= 11T SR 16
Variables [0CAIES.......oouiiiiie e e st 17
LI o T e TRz L = 1 o L= SRR 17
Comandos de salida y entrada de VAlOrESuuiieeiiiiiciiee ettt e e eee e e s tae e e e saaee e sssaeeeesnnreeaens 18
Y 1= o S TP PP P PR PROPROPROT 18
[o] o o AP TPON 18
(00T 1 174 4o OSSP P PP PO PRUPPRRPRRTIOS 19
ConVersion del tiP0 GE VAIOTEScccuiiiieiiee ettt e e ettt e et e e e e te e e e e abeeeeeaaaaeesbbeaeeestaeeeensseeesnsreaaans 19
(0] oY= =T [o] o <3S PUPRRN 20
L= P 20
INUMEIOS ..ttt ettt ettt ettt e at e s bt e skt et e e abesateshtesheeabe e bt eabeeaeeehe e bt e b e eabeeabesabesheeshe e bt enbeeateeueeebeenbeenbens 20
LOZICOS Y A& COMPATACION......uiiieeiiieeeciieeeetie e e eette e e ettt e e ettt e e eetaeeesbseeaeaabeeesassaeaeeabseaeaassseesansaeaeansseseastaeesnnsenns 21
[aTeT g o Yo I [l [o I o 1T Io o o Y-SR 22
ESTrUCTUIAs d@ CONTIOL ...oueiiiiieiiie et et b et e sb e e s b et e bt e s b et e sbee s beesbeesabeeenneesane 23

-\’ DE EDUCACION, FORMACION PROFESIONAL "q DETRABAJO S E P E
Y ECONOMIA SOCIAL e —

Y, de Catalunya a TPEOTE = oD

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

F. W G I H ' SERVICIO PUBLICO
AN Generalitat g % B
b
=2

3

Servei d'Ocupacio
de Catalunya

2= mat@roin

CONICIONES .ttt ettt e e st e et e e s a bt e e ab e e sa bt e e ab e e sa bt e s ab e e s abeeeabeesabeeeabeesabeeeaseesabeesabeesabeeenneess 23

1 P PSSR 23

R T L= TP PP PRP PP 24

L= E I | T TP P TSPV P PP OUPRTPPPOTP 26
L= 4T 1L TP PSP OPPPPRPRTON 26
ST <ot h e bt bRt e ae e b e bt e Rt e r e s anesanesheenreenne e et eneeene 26
ISINBIN (). vt eeureeeete e et e st e et e et e et e st e e e teeeab e e easeesateeaaseesateeasseesabeeanseeaaseeanseeanteeanseeenbeeenseeanbeeenseeenbeeenbeeenreeareennt 27
BUCIES ...ttt ettt b ettt h bt h e a bt et e sh bt e e a bt sa bt e e a bt e SR b e e e bt e s be e e bt e s be e e bt e s beeente s beeeneenane 28
WTTE ettt s e s bt h e ettt e he e b e b et R et san e s he e sRe e e Rt e bt e ae e ene e e ne e re e reeareas 28

GO oo WHITTE ettt et a et e s bt e e bt e s a b e e a bt e s a b e e e ab e e s ab e e e ab e e s beeeareesareeenree s 28

{0 cH TP O PP P PP PTO PP OTPTOPPPTO 29

Or e I T FOF o OF ettt st st s bt et e b e e s e e beesbeenbeebeas 29
SeNntencias Break Y CONTINUE ...co.ui ettt ettt e sar e e sne e e saneeaees 29

UL g Vol o] o 1= T PSP PP R UOPOR PPN 30
DEClaracion € INVOCACIONccueeiueeriieieeie ettt ettt sb e st e st ettt et esbe e s bt e b e e b e sabesaeesbeesbee bt enseemteeneeeneenbeearens 30
PardmetroS Y @rBUMENTOS ..ccueeieiiiiieeite ettt ettt e st e st e st e st e e sabeesabeesabeesabeesabeesabeesabeesaseesabeesaneesabeesnneenane 31
FUNCIONES QUE dEVUEIEN UN VAlOTuiiiiiiiiiieee ettt ettt st st s bt e st e e s st e sbeeeneesane 31

FAN a1 Te =T o TT=T o) o R PP P PP PPPPROP 32

o L= 1 0 33
FUNCIONES GENEIAIES. ...c.eiiiiiiiieiiett ettt ettt r e s s e st saeesa e e e e e e e ereesreenees 33
EVENTOS .ottt e e e e e s e s ar e e s e e e e eas 34
[0 Il de I e =T o{ = Yo [o 1o [=] M [T o= {UF: | [U PURRN 35
L= PR 35

[N U0 0 =T o TP 37

F Y 4 - 1 A PP PP PPNt 37
FOONA e et E bt et s st s re e a et e re e reere s 40
(0] eI =T 1T o [1) AU UUPRRN 42
BOM ettt e — et e e e e e e e —te et e e e et e b aeeeeeeeaa e abeeeteeeeeaaabateeeeeeeaaanbaeeteeeeeaaanhnreeeeeeeaaannreee 42
DOM ..ttt sttt et et r e Rttt s R s Rt R e Rt et e R et R et R e Rt e Rt e Rt s she e sR e e Rt e et et e ne e ne e reereen 43

[0 I =L (o I M A=Y= 1 (=T U UUPTN 49
L=] PP PP PPRR PPN 52
Yo 1 =] N 53

O TUT=Y Y 2SN 56
INSTATACTON ...ttt ettt et s et s h e s bt e e bt e bt e a bt e ht e eh e e e bt ek e e bt ea b e eabesheeshe e bt e bt eabeeateeatenbeebean 56

V W Ge ne ral Itat ﬁ: g'ENEISD‘Il}é:\oCION FORMACION PROFESIONAL s ': AL w
k, A d e C atal u nya > YDEPORTES <M : ¥ ECONOMIA SOCIAL DSOE?%

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

4

Servei d'Ocupacio
de Catalunya

SOC

2= mat@roin

INICIAIIZACION L.ttt sttt e s e s it e e sa bt e s ab e e s et e e e ab e e sa b e e eabeesabe e e bt e sabeeeneesabeeeneenane 57
SEIECEOIES ...ttt sttt s e et e st e et e e s a bt e e ab e e sa bt e e ab e sa bt e et e e sa bt e et e e sabe e eabee s beeeabeesabeeeanee s 57
=] oo o LTSS T RO TRTO U PR PSP 58
Y1 [=To1 o T PP T OO PSPPSR PP OPRPOPPTO 59
ATFIDULOS / CSS .ottt ettt ettt e et e et e et e e te e e etee e beeeeteeeabeseataeeateseebeeeteseeteeetesenseeentesenseeensreenaseensees 59
1Y =T a Y1 o 10 = ox o o SRS 59
ALTAVESANTO ..ttt ettt e et s bt e e bt e s bt e e bt e sa bt e e bt e s bt e e bt e s b et e eaee e be e e anee e be e e nnneeereeenaneennees 59
EVBNTOS ..o e e e et e e e s aa s e e e s 59
23 1T (o LT P ST PRO PO PROPT 60
LN - D OSSP PPTTRN 61
NUCIBAT .ttt et a e s aa e st s ae e b e s as e e ae e s b e e bt e b s nesane s e naie 62
[LU= TSRS 62
OWICAIOUSEL ...ttt sttt e e s ae e s e b e bt e b e s enesanesaeesaeesaeeneenneens 62

DE EMPLEO ESTATAL
MINISTERIO

DE EDUCACION, FORMACION PROFESIONAL DETRABAJO S E P E

Y DEPORTES Y ECONOMIA SOCIAL =2 5=1 E=

\ de Catalunya L2 o
Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacid Estatal (SEPE)

A Generalitat B 2

i‘\in
s B

5

Servei d'Ocupacio
de Catalunya

INTRODUCCION

TIPOLOGIAS DE LENGUAJES DE PROGRAMACION

Un lenguaje de programacidon es un idioma artificial disefiado para expresar procesos que pueden ser
reproducidos por maquinas. Se utilizan para crear programas que controlan el comportamiento légico de una
maquina y para expresar algoritmos con precisién.

Decimos lenguaje porque esta formado por un conjunto de simbolos, reglas sintacticas y semanticas que definen
su estructura y significado de los elementos y expresiones.

Los lenguajes interpretados son aquellos que requieren un programa auxiliar o intérprete que traduce el
lenguaje a binario para que la maquina lo pueda procesar y ejecutar. Ejemplos: PHP, Phyton, JavaScript, etc.

Los lenguajes compilados necesitan un programa anexo llamado compilador que hace la transformacion a un
lenguaje inteligible para la maquina y genera un archivo que se puede ejecutar sin la necesidad de ningun otro
programa intermediario; es lo que se llama archivo ejecutable. Ejemplos: C, C++, Java, etc.

Los lenguajes transpilados son aquellos que, antes de ejecutarse, se transforman en otro lenguaje de nivel
similar, habitualmente por motivos de compatibilidad o por aprovechar caracteristicas avanzadas no disponibles
en todas las plataformas. En este proceso, un transpilador convierte el cédigo fuente original en otro cédigo
fuente equivalente pero mas ampliamente soportado. Ejemplos: Haxe, Sass/SCSS, TypeScript, etc.

CONCEPTUALIZACION DE LAS BASES DEL PENSAMIENTO COMPUTACIONAL

El pensamiento computacional se basa en pensar de la misma manera que lo haria un cientifico informatico
cuando nos enfrentamos a un problema. En otras palabras, es un proceso que permite formular problemas de
manera que sus soluciones pueden ser representadas como secuencias de instrucciones y algoritmos.

Este tipo de pensamiento lo podemos definir como un proceso de reconocimiento de aspectos relacionados con
la informatica en la que se aplican herramientas y técnicas para comprender, razonar y solucionar problemas
tanto naturales como artificiales. Estas caracteristicas son la abstraccion, el pensamiento algoritmico, la
descomposicion y el reconocimiento de patrones.

Es probable que durante el proceso de resolucion de estos problemas exista informacion irrelevante. La
abstraccion es la caracteristica de prescindir de la informacidn irrelevante para que en la mesa esté sélo la
informacion necesaria para el cumplimiento del objetivo.

El pensamiento algoritmico es otra de las caracteristicas del pensamiento .‘fv
computacional: es necesario para comunicar e interpretar una serie de Tt r’l #_] '_'—
instrucciones ordenadas que nos lleven a un resultado concreto vy g

predecible. Qb \\ ‘H\

Es decir, el pensamiento algoritmico nos permite automatizar soluciones. ¢
Un buen ejemplo de este pensamiento es la cocina: las recetas son J
algoritmos en si mismo. ¢{Como se prepara un sandwich de mantequilla de
cacahuete y mermelada? Pensar y escribir los pasos necesarios, sin olvidar

ningun detalle, estructura el pensamiento de una forma computacional.

2= mat@roin

V W G e n e ra I itat i "'" g:-ZNE'SDEgSCION FORMACION PROFESIONAL
Y, de Catalunya =%z |

Y DEPORTES
2

SERVICIO PUBLICO
DE EMPLEO ESTATA!

' ¥ MINISTERIO ST
- WREe . SEPE
- YECONOMiAsocAL =1 =

SERVEI PUBLIC
D'OCUPACIO ESTATAL

B\Y we

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

6

Servei d'Ocupacio
de Catalunya

SOC

Otra caracteristica del pensamiento computacional es la descomposicidn: al enfrentarse a un problema, éste

2= mat@roin

debe desarticularse para convertirlo en una practica mas sencilla.

Si el problema original es demasiado complejo para solucionarlo de golpe, hay que descomponerlo en diferentes
problemas menores cada vez mas especificos y concretos hasta que sean solucionables.

Esta forma de plantear subproblemas cada vez mds concretos a partir de un problema general se llama disefio
descendente.

Nivell de
descomposicio 1

Nivell de
descomposicio 2

Nivell de
descomposicio 3

Una vez desarticulado el problema principal, cada uno de ellos debe resolverse sobre la base de una metodologia
similar que se haya utilizado con otros problemas ya resueltos.

Esta caracteristica es el reconocimiento de patrones: saber generalizar un proceso de resolucion con la finalidad
de que éste sirva para poder resolver otros problemas similares.

Cuando pensamos en los problemas, podemos reconocer similitudes entre ellos y que se pueden resolver de
manera similar. A esto se denomina coincidencia de patrones, y es algo que hacemos naturalmente todo el
tiempo en nuestra vida diaria.

Pensamiento computacional y programacion no son sindnimos, pero comparten procesos similares: ambos son
un medio que sirve para descomponer y resolver problemas. Mientras que el pensamiento computacional es
aplicable a muchas disciplinas, la programacion limita estos procesos exclusivamente en el dmbito de la
informatica.

SERVICIO PUBLICO
DE EMPLEO ESTATAL

MINISTERIO
3 EE-(r:ONOMlA SOCIAL S E P E

T sevapUBLC
D'OCUPACIO ESTATAL

m G e n e ra I itat ﬁ% E:E"IEIE;EEAOCION FORMACION PROFESIONAL
de Catalunya L

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

7

Servei d'Ocupacio
de Catalunya

2= mat@roin

JAVASCRIPT

JavaScript es un lenguaje de programacién utilizado para crear pequenos programas encargados de realizar
acciones dentro del dmbito de una pdagina web. Con JavaScript podemos crear efectos especiales en las paginas
y definir interactividades con el usuario. El navegador del cliente es el encargado de interpretar las instrucciones
JavaScript y ejecutarlas para realizar estos efectos e interactividades, de manera que el mayor recurso, y quizds
el Unico, con el que cuenta este lenguaje es el propio navegador.

JavaScript es un lenguaje interpretado que se introduce en una pdgina web HTML. Un lenguaje
interpretado quiere decir que a las instrucciones las analiza y procesa el navegador en el momento
que deben ser ejecutadas.

Entre las acciones tipicas que se pueden realizar en JavaScript tenemos dos vertientes. Por un lado los efectos
especiales sobre paginas web, para crear contenidos dindmicos y elementos de la pagina que tengan
movimiento, cambian de color o cualquier otro dinamismo. Por otro, JavaScript nos permite ejecutar
instrucciones como respuesta a las acciones del usuario, de manera que podemos crear paginas interactivas con
programas como calculadoras, agendas, o tablas de cdlculo.

JavaScript es un lenguaje con muchas posibilidades, permite la programacién de pequeiios scripts, pero también
de programas mas grandes, orientados a objetos, con funciones, estructuras de datos complejos, etc. Toda esta
potencia de JavaScript se pone a disposicion del programador, que se convierte en el verdadero propietario y
controlador de cada cosa que pasa en la pagina. Todo lo que veremos a continuacion nos servira de base para
adentrarnos mas adelante en el desarrollo de paginas enriquecidas del lado del cliente.

JavaScript, al igual que ActionScript en Flash o Visual Basic Script, es una de las multiples maneras que han surgido
para extender las capacidades del lenguaje HTML (lenguaje para el disefio de paginas de Internet). Al ser la mas
sencilla, es de momento la mas extendida. JavaScript no es un lenguaje de programacion propiamente dicho
como C, C++, Delphi, etc. Es un lenguaje script u orientado a documento, como pueden ser los lenguajes de
macros que tienen muchos procesadores de texto y hojas de cdlculo. No se puede desarrollar un programa con
JavaScript que se ejecute fuera de un navegador, aunque en este momento empieza a expandirse a otras areas
como la programacion en el servidor con NODE.JS.

UN POCO DE HISTORIA SOBRE JAVASCRIPT

Segun va creciendo la web y sus diferentes usos se fueron complicando las paginas y las acciones que se querian
realizar a través de ellas. Al poco tiempo quedod reflejado que HTML no era suficiente para realizar todas las
acciones que se pueden llegar a necesitar en una pagina web. En otras palabras, HTML se habia quedado corto
ya que sdlo servia para presentar el texto en una pagina, definir su estilo y poco mas.

Al complicar los sitios web, una de las primeras necesidades fue que las paginas respondieran a algunas acciones
del usuario, para desarrollar pequefias funcionalidades mas alla de los propios enlaces. El primer ayudante para
cubrir las necesidades que estaban surgiendo fue Java, que es un lenguaje de propdsito general, pero que habia
creado una manera de incrustar programas en paginas web. A través de la tecnologia del Applets, se podia crear
pequefios programas que se ejecutaban en el navegador dentro de las propias paginas web, pero que tenian
posibilidades similares a los programas de propdsito general. La programacion de Applets fue un gran avance y
Netscape, entonces el navegador mas popular, habia roto la primera barrera del HTML al hacer posible la
programacion dentro de las paginas web. No hay duda de que la aparicidn de los Applets supuso un gran avance

SERVICIO PUBLICO

[T Generali =
| | eneralitat -, .
\ , Q DE EDUCACION, FORMACION PROFESIONAL DETRABAJO SEPE
Y de Catalunya aU@.s oo A NEONSHASSEES

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

o
i

B\Y we
2 R0

8

Servei d'Ocupacio
de Catalunya

2= mat@roin

en la historia de la web, pero no ha sido una tecnologia definitiva y muchas otras han seguido implementando el
camino que comenzd con ellos.

Netscape, después de hacer sus navegadores compatibles con los applets, comenzo a desarrollar un lenguaje de
programacion al que llamd LiveScript que permitié crear pequefios programas en las paginas y que fuera mucho
mas sencillo de utilizar que Java. De manera que el primer JavaScript se llama LiveScript, pero no duré mucho
este nombre, ya que antes de lanzar la primera versién del producto se forjé una alianza con Sun Microsystems,
creador de Java, para desarrollar en conjunto este nuevo lenguaje.

La alianza hizo que el JavaScript se disefiara como un hermano pequefio de Java, sélo util dentro de las paginas
web y mucho mas facil de utilizar, de manera que cualquier persona, sin conocimientos de programacion, pudiera
adentrarse en el lenguaje y utilizarlo a su aire. Ademads, para programar JavaScript solo es necesario un kit de
desarrollo, ni compilar los scripts, ni realizarlos en ficheros externos al cédigo HTML, como pasaba con los
applets.

Netscape 2.0 fue el primer navegador que entendia JavaScript y su iniciativa fue seguida por otros clientes web
como Internet Explorer a partir de la version 3.0. Sin embargo, la compafiia Microsoft nombré a este lenguaje
como JScript y tenia ligeras diferencias respecto a JavaScript, algunas de las cuales perduran hasta el dia de hoy.

DIFERENCIAS ENTRE DIFERENTES NAVEGADORES

Como hemos dicho el JavaScript de Netscape y el de Microsoft Internet Explorer tenia ligeras diferencias, pero
es que también el mismo lenguaje evolucioné a medida que los navegadores presentaban sus diferentes
versiones a medida que las paginas web se hacian mds dinamicas y mas exigentes las necesidades de
funcionalidades.

Las diferencias de funcionamiento de JavaScript ha marcado la historia del lenguaje y la manera en que los
desarrolladores se relacionan con él, debido a que estaban obligados a crear cédigo que funcionara
correctamente en diferentes plataformas y diferentes versiones de las mismas. Hoy en dia, siguen habiendo
muchas diferencias y para solucionarlo han surgido muchos productos como los Frameworks JavaScript, que
ayudan a realizar funcionalidades avanzadas de DHTML sin tener que preocupar en hacer versiones diferentes
de los scripts, para cada uno de los navegadores posibles de mercado.

DIFERENCIAS ENTRE JAVA Y JAVASCRIPT

Realmente JavaScript se Ilamd asi porque Netscape, que estaba aliado a los creadores de Java en la época, quiso
aprovechar el conocimiento y la percepciéon que las personas tenian del popular lenguaje. Con todo, se cred un
producto que tenia ciertas similitudes, como la sintaxis del lenguaje o el nombre. Se hizo entender que era un
hermano pequefio y orientado especificamente para hacer cosas en las paginas web, pero también se hizo caer
a muchas personas en el error de pensar que son lo mismo. Queremos que quede claro que el JavaScript no tiene
nada que ver con Java, excepto en sus origenes, como se ha podido leer hace unas lineas. Actualmente, son
productos totalmente diferentes y no guardan entre si mas relacién que la sintaxis idéntica y poco mas. Algunas
diferencias entre estos dos lenguajes son las siguientes: el Compilador. Para programar en Java necesitamos un
Kit de desarrollo y un compilador. Sin embargo, JavaScript no es un lenguaje que necesite que sus programas se
compilen, sino que estos se interpretan por parte del navegador cuando éste lee la pagina.

e Orientado a objetos: Java es un lenguaje de programacion orientado a objetos. (Mas tarde veremos
que quiere decir orientado a objetos, para quien no lo sepa todavia). JavaScript se ha actualizado para

u
MINISTERIO MINISTERIO
b3 Q DE EDUCACION, FORMACION PROFESIONAL DETRABAJO S E P E
L\ /) a Y DEPORTES Y ECONOMIA SOCIAL -_—
= a2 SERVEI PUBLIC
. D'OCUPACIO ESTATAL

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

SERVICIO PUBLICO

o
i

2 R0

9

Servei d'Ocupacio
de Catalunya

2= mat@roin

que también sea orientado a objetos, pero podemos programar sin necesidad de crear clases, tal y como
se realiza en los lenguajes de programacién estructurada como C o Pascal.

e Propésito: Java es mucho mas potente que JavaScript, esto se debe a que Java es un lenguaje de
propodsito general, con el que se pueden hacer aplicaciones de lo mas variado, sin embargo, con
JavaScript solo podemos escribir programas para que se ejecuten en paginas web.

e Estructuras fuertes: Java es un lenguaje de programacion fuertemente tipado, esto quiere decir que al
declarar una variable deberemos indicar su tipo y no podra cambiar de un tipo a otro automaticamente.
Por su parte JavaScript no tiene esta caracteristica, y podemos colocar en una variable la informacion
que deseamos, sin importar el tipo de la misma. Ademas, podremos cambiar el tipo de informaciéon de
una variable cuando queramos.

e Otras caracteristicas: Java es mucho mas complejo, aunque también mas potente, robusto y seguro.
Tiene mas funcionalidades que JavaScript y las diferencias que los separan son lo suficientemente
importantes como para distinguirlos facilmente.

QUE NECESITAS PARA TRABAJAR CON JAVASCRIPT

Para programar en JavaScript necesitamos basicamente lo mismo que para desarrollar paginas web con HTML:
un entorno integrado de desarrollo o IDE (acrénimo en inglés de integrated development environment) o editor
de texto y un navegador compatible con JavaScript.

DIFERENTES VERSIONES DE JAVASCRIPT, LOS NAVEGADORES QUE LAS ACEPTAN Y SUS
AVANCES.

El lenguaje haido avanzando durante sus afios de vida e incrementando sus capacidades. Al principio podia hacer
muchas cosas en la pagina web, pero tenia pocas instrucciones para crear efectos especiales.

Con el tiempo también el HTML ha avanzado y se han creado nuevas caracteristicas como las capas, que permiten
tratar y maquetar los documentos de manera diferente. JavaScript ha avanzado también y para gestionar todas
estas nuevas caracteristicas se han creado nuevas instrucciones y recursos.

Realmente cualquier navegador medianamente moderno tendra ahora todas las funcionalidades de JavaScript
que necesitaremos. No obstante, puede ir bien conocer las primeras versiones de JavaScript que comentamos,
a modo de curiosidad.

e JavaScriptl: nacié con el Netscape 2.0 y soportaba gran cantidad de instrucciones y funciones, casi todas
las que existen ahora ya se introdujeron en el primer estandar.

e JavaScriptl.1l: es la version de JavaScript que se disefid con la llegada de los navegadores 3.0.
Implementaba poco mas que su anterior version, como el tratamiento de imagenes dindmicamente y la
creacién de arrays.

e JavaScriptl.2: la version de los navegadores 4.0. Esta tiene como desventaja que es un poco diferente
en plataformas Microsoft y Netscape, ya que ambos navegadores crecieron de manera diferente y
estaban en plena lucha por el mercado.

e JavaScriptl.3: version que implementan los navegadores 5.0. En esta versidn se han limado algunas
diferencias entre los dos navegadores.

e JavaScript 1.5: Version que implementa Netscape 6.

e Porsu parte, Microsoft también ha evolucionado hasta presentar su versidn 5.5 de JScript (asi llamamos
al JavaScript utilizado por los navegadores de Microsoft).

n
AN Generalitat e
[¥ MINISTERIO Sl % MINISTERIO
S "Q DEEDUCACION, FORMACION PROFESIONAL ST 0 DETRABAIO S EPE
Y DEPORTES 1 YECONOMIAsociAL =1 =

Y de Catalunya =¥z -

SERVEI PUBLIC

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

10

Servei d'Ocupacio
de Catalunya

2= mat@roin

e ECMAScript: En 1997 los autores propusieron Javascript como estandar de la European Computer
Manufacturers Association ECMA, que a pesar de su nombre no es europeo, sino internacional, con la
sede en Ginebra.

e Para evitar estas incompatibilidades, el World Wide Web Consortium (W3C) disefié el estandar
Document Object Model (DOM, o Modelo de Objetos del Documento en castellano), que incorpora el
Konqueror, las versiones 6 de Internet Explorer y Netscape Navigator, Opera version 7, y Mozilla desde
su primera version.

SINTAXIS BASICA

JavaScript es un lenguaje de programacion y, tal y como hemos comentado antes, esta formado por un conjunto
de simbolos, reglas sintacticas y semdnticas que definen su estructura y significado de los elementos vy
expresiones.

Para hacernos una idea, cuando redactamos un contenido, la frase u oracion es el conjunto de palabras con
sentido completo, y normalmente las acabamos con un signo de puntuacion. A esta estructura le decimos
sentencia en programacion.

A su vez, las oraciones se componen de unidades gramaticales o sintagmas: sujeto, predicado, complemento
directo, complemento indirecto,... Dentro de una sentencia, a estas unidades le diremos expresiones.

En las frases, podemos tener sustantivos para hacer referencia a algln concepto. En la programacion, tenemos
las variables que almacenan informacion.

En las oraciones tenemos verbos para expresar acciones. En la programacidon, tenemos comandos para dar las
ordenes.

En las frases tenemos conjunciones para poder unir palabras y sintagmas. En la programacion tenemos los

operadores.
ORACIONESeiiieiiiiteteetes ettt s e st SENTENCIES
SINTAGIMAS ...ttt ettt sttt ettt st st saee bt e bt emeeeneeene EXPRESIONES
SUSTANTIVOS ...ttt st s VARIABLES
CONJUNCIONES ..ottt st e OPERADORES
VERBOS ...ttt ettt sttt sttt sb ettt st sae e sbe e bt et e e st e saeesaeeneee COMANDOS

Cada vez que escribimos una instruccion hay que acabar con el cardcter punto y coma. Es
importantisimo tener en cuenta que JavaScript es sensible a mayusculas y minusculas.

Aunque nos dejemos el puntoy coma ";" al final de una sentencia, JavaScript si detecta un salto de linea al cédigo
la finaliza implicitamente, aunque es una buena practica finalizarlas explicitamente para mejorar el rendimiento
del navegador.

COMENTARIOS
Una parte fundamental de la programacion es afadir comentarios que nos ayuden a componer cada parte del
codigo sin que el navegador los interprete. Para afiadir comentarios tenemos la opcidn de afiadir un comentario

SERVICIO PUBLICO
DE EMPLEO ESTATAL

MM Generalitat

: v & MINISTERIO Sl % MINISTERIO
S " DEEDUCACION, FORMACION PROFESIONAL ST 0 DETRABAIO SEPE
V) de Catalunya =W®: == e
2 2 SERVEI PUBLIC
. DOCUPACIO ESTATAL

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

11

Servei d'Ocupacio
de Catalunya

2= mat@roin

de una sola linea // y cuando cambiamos de linea continuamos con la ejecucién normal, o la opcidn de abrir un
comentario /* y no cerrarlo */ hasta mas adelante:

// comentario de una linea
/*

Comentario

en varias

lineas de cdédigo
&Y/

FORMAS DE EJECUTAR SCRIPTS DE JAVASCRIPT

Hay dos maneras basicas de ejecutar scripts JavaScript en una pdagina: al cargar la pagina o como respuesta a
acciones del usuario.

EJECUCION DIRECTA

Es el método de ejecutar scripts mas bdsico. En este caso se incluyen las instrucciones dentro de la etiqueta
<script>. Cuando el navegador lee la pagina y encuentra un script interpreta las lineas de cddigo y las va
ejecutando una después de otra. Llamamos a este modo ejecucion directa ya que cuando se lee la pagina se
ejecutan directamente los scripts.

<!DOCTYPE html>
<html lang="es">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Ejemplo JS</title>
<style>
body {font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;}
</style>
</head>
<body>
<hl>Ejemplo JS</h1>
<script>
document.write (" jHola mundo!") ;
</script>
</body>
</html>

En un mismo documento .html podemos tener tantas etiquetas <script> como hagan falta en cualquier parte
del documento, aunque lo mas habitual es que estén en el <head> del documento.

RESPUESTA A UN EVENTO

Es la otra manera de ejecutar scripts, pero antes de verla tenemos que definir los eventos: son las acciones que
realiza el usuario. Los programas como JavaScript estdn preparados para atrapar determinadas acciones
realizadas, en este caso sobre la pagina, y realizar acciones como respuesta. De esta manera se pueden realizar
programas interactivos, ya que controlamos los movimientos del usuario y respondemos a ellos. Hay muchos
tipos de eventos diferentes, por ejemplo la pulsacién de un botdn, el movimiento del ratén o la selecciéon de
texto de la pagina.

SERVICIO PUBLICO

DF EMPLED ESTATAL
v ¥ MINISTERIO

_ .
V W General Itat " MINISTERIO A

A / ';’ DE EDUCACION, FORMACION PROFESIONAL E DETRABAJO S E P E
LY de Catal u nya a YOS e e

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

B \}

12

Servei d'Ocupacio
de Catalunya

2= mat@roin

Las acciones que queremos hacer como respuesta a un evento deben indicarse dentro del mismo cédigo HTML,
pero en este caso se indican en atributos HTML que se colocan dentro de la etiqueta que queremos que responda
a las acciones del usuario.

<button type="button" onclick="alert("jHola mundo!") ;">Saluda</button>

INCLUIR FICHEROS EXTERNOS DE JAVASCRIPT

Otra manera de incluir scripts en paginas web, implementada a partir de JavaScript 1.1, es incluir archivos
externos donde se pueden colocar muchas funciones que se utilicen en la pagina. Los ficheros suelen tener
extension .js y se incluyen de esta manera:

<script src="archivo_externo.]js" defer>
// estoy incluyendo el fichero " archivo externo.js "
</script>

Esta es la forma mds habitual y adecuada para mantener mds organizado el cédigo en nuestros
proyectos web.

En caso de vincular con un archivo .js, aparte del atributo src podemos afiadir otros atributos para definir cuando
se ejecutard este codigo:

e src: especifica la URL de un fichero de script externo.

e async: especifica que el script se descarga en paralelo a la pagina, y se ejecuta tan pronto como esta
disponible (antes de que acabe la carga de la pagina).

o defer: especifica que el script se descarga en paralelo a la pagina, y se ejecuta después de que la pagina
haya terminado de cargarse.

Es importante aclarar que si utilizamos una etiqueta <script> para enlazar a otro archivo .js, no podemos
utilizar esta misma etiqueta para anadir cédigo, porque serd sobreescrito por el documento enlazado por el
atributo src.

DEPURACION DEL CODIGO

Una forma habitual y rapida para depurar o mostrar resultados del cédigo es emplear el objeto console con los
diferentes métodos, el mas utilizado el .log(). Con la expresidn console.log("mensaje") podemos lanzar mensajes
en la consola de depuracién del propio navegador:

<script>
console.log("Hola mén!") ;
</script>

SERVICIO PUBLICO
DF EMPLED ESTATAL
v ¥ MINISTERIO
"Q DE EDUCACION, FORMACION PROFESIONAL

AN Generalitat . Py e SIS
ék, A d e C atal unya 2 Y DEPORTES Y ECONOMIA SOCIAL -

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

13

Servei d'Ocupacio
de Catalunya

2= mat@roin

W O inspector [Depurador (B emmagatzematge T Accessibilitat) Xarxa] e« X
Exemple Js Q, Cerca HTML +

html > body

W Filtra els estils thov s + -:': @ O [Disposicie Calculat Canwis v
@ ¥ Filtra la sortida {1’ X
Errors Avisos Informacié Registres Depuracid C55 XHR Sollicituds

17:85:19.138 exempledl.html:14:17
» o

El objetivo de este manual no es mostrar todas las opciones posibles porque es un lenguaje vivo que cambia
continuamente, por lo tanto, recomiendo consultar blogs, foros y otras web de referencia como por ejemplo
http://www.w3schools.com/ o https://developer.mozilla.org/

De forma rapida, podemos listar los lenguajes web como una piramide, donde cada uno de ellos complementa
el anterior:

e En la base tenemos el HTML, que nos permite estructurar los
contenidos por su representacion.

e EI CSS complementa al HTML para darle estilo y disefio, una mejor
apariencia a la estructura anterior. MySQL

e El JavaScript da dinamismo y efectos especiales al HTML y al CSS. La
suma de los tres lenguajes se denomina DHTML, y su principal

caracteristica es que sélo hace falta un navegador para ver los PHP
resultados.
e EI PHP es un lenguaje de servidor, por lo tanto, permite aumentar la JavaScript

seguridad y utilizar recursos de forma independiente en el navegador

del usuario. CSS

e El MySQL es una tecnologia de base de datos, que le permite al PHP

almacenar datos y contenidos para recuperarlos posteriormente; es la
base para desarrollar herramientas web como los gestores de HTM L
contenidos.

V‘ W G I .t t : SERVICIO PUBLICO
' | e n e ra I a 2 ¥ MINISTERIO MINISTERIO BESEIED ST
k A d e C a tal u nya Q DE EDUCACION, FORMACION PROFESIONAL ?EZ'X}ES{?IA oL SEﬂ

‘ Y DEPORTES SERVEI PUBLIC
D'OCUPACIO ESTATAL
Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

B\ we
s B

14

http://www.w3schools.com/
https://developer.mozilla.org/

Servei d'Ocupacio
de Catalunya

2= mat@roin

VARIABLES

Uno de los fundamentos de la programacidn es conocer el estado del sistema en todo momento y lo conseguimos
acumulando informacién en las variables. Podemos imaginarnos las variables como cajones dentro de la
memoria RAM del dispositivo, unos cajones que creamos segun los necesitamos pero que se eliminardn
automaticamente cuando cambiemos de documento. Podemos crear tantos cajones -variables- como
necesitemos, pero para poder organizarnos y poder encontrar esta informacion hay que etiquetar estos cajones,
es decir, hay que nombrar las variables.

Las variables son contenedores de informacion para poder recuperarla o actualizarla en cualquier
momento a partir de su nombre.

En el momento de crear una variable hay que darle un nombre. Este nombre es completamente arbitrario, pero
hay que seguir unas normas bdsicas para asegurarnos el buen funcionamiento:

e No podemos utilizar palabras ya reservadas para el propio lenguaje JavaScript: las nombradas en este
manual.

e No podemos emplear espacios ni signos de puntuacién: los nombres deben escribirse seguidos, sin
acentos ni otros caracteres especiales, empleando el alfabeto inglés; sélo podemos utilizar el guion bajo

_"siguiendo la practica snake_case o el simbolo de "$".

e Pueden contener nimeros, pero nunca como primer caracter: el primer caracter siempre sera una letra.

e Como buena practica, se recomienda que tengan nombres autodefinitorios: esto implica que los
nombres sean compuestos por diferentes palabras.

e Como buena practica, se recomienda utilizar la practica del lowerCamelCase: escribir frases o palabras
compuestas eliminando los espacios y poniendo en mayuscula la primera letra de cada palabra, excepto

la primera palabra que se mantiene en minuscula.

Tipos de informacion Nombre de variable incorrecto Nombre de variable correcto
Nombre del cliente N-C nomClient

12 nimero 1 ndmero numerol

Numero 2 Numero2 num_2

DECLARACION E INSTANCIACION

Al proceso de crear una variable asignandole un nombre Unico e irrepetible se le dice declaracion. Es importante
tener en cuenta que JavaScript permite sobreescribir las variables si al declarar una variable le asignamos un
nombre ya existente, provocando errores posteriores en el tratamiento en la informacion.

La instanciacion es el proceso de asignar un valor a la variable, y se hace con el operador "=". Si intentamos hacer
una instanciacién sin declarar previamente la variable, JavaScript hard una declaracién implicita y nos dejara

continuar sin errores, pero es una mala practica porque se genera cédigo muy confuso.
Para declarar una variable utilizamos uno de los comandos reservados para el propio lenguaje:

Tipo de comando Ejemplo de declaracion e Cuando lo utilizaremos
instanciacion
var var nomClient = “Maria”; Es el método clasico y lo utilizaremos cuando
gueremos una variable de ambito global.

SERVICIO PUBLICO

Al Generalitat .g. s
k A t S I :S%%:;Rc"%mn.rommm PROFESIONAL EEN;RS‘I\EBR}{]%‘ SEPE
1\ / de Ca al u nya 'l a = YECONOMIA SOCIAL =
Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

o
i

B\Y we
2 R0

15

Servei d'Ocupacio
de Catalunya

2= mat@roin

let let contador =1; Es el método mas moderno y lo utilizaremos
cuando queremos una variable de ambito local.
const const nomClient = “Jordi”; Es el método mas moderno para definir

constantes: variables que una vez instanciadas
no se volveran a cambiar.

Cuando utilizamos var o let podemos hacer la declaracion en una sentencia y la instanciacion en otra sentencia,
pero cuando empleamos const hay que hacer la declaracidn y la instanciacion en la misma sentencia.

Podemos declarar multiples variables simultdneamente con un Unico comando var o let si separamos los
diferentes nombres con comas ",".

<script>
// Declaracién de variables
var nombreCliente, apellidoCliente;

// Instanciacién de variables
nombreCliente = "Martin";
apellidoCliente = "Garcia";

// Declaracién e instanciacién de constante
const idioma = "es";
</script>

AMBITO DE VARIABLES —SCOPE-

En la definicion de var y let hemos comentado que la principal diferencia es el ambito de su uso —scope-: se le
llama ambito de las variables en el lugar donde éstas estan disponibles. En general, cuando declaramos una
variable hacemos que esté disponible en el lugar donde se ha declarado. Esto ocurre en todos los lenguajes de
programacion y, como JavaScript se define dentro de una pagina web, las variables que declaramos en la pagina
estaran accesibles dentro de ella.

En JavaScript no podremos acceder a variables que hayan sido definidas en otra pagina. Por lo tanto, la propia
pagina donde se define es el @ambito mas habitual de una variable y la llamaremos a este tipo de variables globales
en la pagina. Veremos también que se pueden hacer variables con ambitos diferentes del global, es decir,
variables que declararemos y tendran validez en lugares mas acotados.

VARIABLES GLOBALES

Como hemos dicho, las variables globales son las que estdn declaradas en el ambito mds amplio posible, que en
JavaScript es una pagina web. Para declarar una variable global en la pagina simplemente lo haremos con la
palabra var.

<script>
var variableGlobal;
</script>

Las variables globales son accesibles desde cualquier lugar de la pagina, es decir, desde el script donde se han
declarado y todos los demas scripts de la pagina, incluidos los manejadores de eventos, como el onclick, que ya
vimos que se podia incluir dentro de determinadas etiquetas HTML.

SERVICIO PUBLICO
DE EMPLEO ESTATAL

v & MINISTERIO Sl % MINISTERIO
= DE EDUCACION, FORMACION PROFESIONAL ST 0 DETRABAIO SEPE

AT Generalitat
Y, de Catalunya s Yoo AUIDE YECONGHASSSREY = s

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

»\}
L

16

Servei d'Ocupacio
de Catalunya

VARIABLES LOCALES

También podremos declarar variables en lugares mas acotados, como por ejemplo una funcidn: a estas variables
las llamaremos locales. Cuando se declaren variables locales sélo podremos acceder dentro del lugar donde se
ha declarado, es decir, si la habiamos declarado en una funcién sélo podremos acceder cuando estemos en esta
funcién.

Las variables pueden ser locales a una funcién, pero también pueden ser locales en otros ambitos, como por
ejemplo un bucle. En general, son dmbitos locales cualquier lugar acotado por llaves. Estos elementos se tratan
mds adelante en este manual.

TIPOS DE VARIABLES

JavaScript no es un lenguaje fuertemente tipado, y esto quiere decir que las variables no tienen un tipo definido
en su declaracion, sino que se definen segun el tipo de valor que le asignamos en la instanciacion. Asi, segun el
valor que instanciemos a una variable, tendremos los siguientes tipos:

Tipo de variable Ejemplo Explicacion
string var nombreCliente = Cadena de texto. Los valores van entre comillas dobles “ "
"Maria"; “ o sencillas “ ' “.
number var registro = 1.5; Numeros. Los valores sdlo pueden ser numéricos; el
separador decimal es el punto ".".
boolean var estado = true; Los valores boleanos son los valores reservados true o
false.
undefined var edad; Es el valor predeterminado de las variables declaradas pero
ni instanciadas.
null var apellidoCliente Esun tipodevalor que es “sinvalor”; se puede utilizar para
= null; dejar una variable vacia o vaciar de valor una variable ya
instanciada previamente.
function var miFuncion = Una de las formas de declarar funciones es como una
function () {}; variable. Las funciones se explican mas adelante.
object var persona = {} Los objetos son la forma de almacenar informacién de

forma mas estructurada y compleja. Los objetos se
explican mas adelante.

Definir correctamente el tipo de las variables nos permite utilizar los operadores de la forma que mas nos
interese, por lo tanto hay que controlar el tipo de las variables.

Hay que insistir en que el tipo de una variable se establece en la instanciacion, por lo tanto, si una variable se
vuelve a instanciar con un tipo de valor diferente, la variable cambia también de tipo. Para saber en cada
momento el tipo de una variable podemos emplear el operador typeof:

<script>
var laMevaVariable;
console.log(laMevaVariable, typeof laMevaVariable); // undefined undefined
laMevaVariable = "Jordi";

console.log(laMevaVariable, typeof laMevaVariable); // Jordi string

laMevaVariable = 2026;

console.log(laMevaVariable, typeof laMevaVariable); // 2026 number

2= mat@roin

MM Generalitat

Y, de Catalunya

SERVICIO PUBLICO
DE EMPLEO ESTATAL

% gl ¥ MINISTERIO Sl % MINISTERIO

S " DEEDUCACION, FORMACION PROFESIONAL ST 0 DETRABAIO S E P E
| o Y DEPORTES Y ECONOMIAsociaL =1 =

F a2 2 SERVE PUBLIC

D'OCUPACIO ESTATAL

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,

Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

17

Servei d'Ocupacio
de Catalunya

SOC 22 mat@roin

laMevaVariable = true;
console.log(laMevaVariable, typeof laMevaVariable); // true boolean

laMevaVariable = null;
console.log(laMevaVariable, typeof laMevaVariable); // null object

laMevaVariable = {};
console.log(laMevaVariable, typeof laMevaVariable); // Object {} object
</script>

COMANDOS DE SALIDA Y ENTRADA DE VALORES

Una vez tenemos valores almacenados en las variables, s6lo hay que nombrar su nombre para hacer referencia
a su contenido. Pero si queremos ver su valor en pantalla, hay que utilizar alguno de los comandos del lenguaje.
Ya hemos visto console.log (), pero tenemos otros para poder mostrar directamente en pantalla:

ALERT
Con el comando alert () podemos mostrar mensajes cortos en una pequefia ventana del propio navegador;
s6lo hay que poner el mensaje tipo texto o el nombre de la variable entre los paréntesis:

<script>
const mensaje = "Hola mén!";
alert (mensaje) ;

</script>

@ filews

Hola mént

PROMPT

Con el comando prompt () podemos pedir informacién en una pequefia ventana del propio navegador para
que el visitante llene con su informacidn; sélo hay que poner nuestra pregunta tipo texto y utilizar este prompt
para instanciar una variable:

<script>
const nomVisitant = prompt ("Digues el teu nom") ;
alert (nomVisitant) ;

</script>

El valor que devuelve el prompt es siempre un tipo string.

© fileys

Digues el teu nom

(

m Cancella

m Generalitat gggru%m,rommmmom %E?E
N\ de Catalunya =Wz === <ie -

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacid Estatal (SEPE)

18

SOC

Servei d'Ocupacio
de Catalunya

2= mat@roin

CONFIRM

Con el comando confirm () podemos mover informacién en una pequefia ventana del propio navegador para
que el visitante la acepte (si pulsa el botén Aceptar) o la rechace (si pulsa el boton Cancelar); solo hay que poner
nuestra pregunta tipo texto y utilizar este confirm para instanciar una variable:

<script>
const aceptacion = confirm("Acceptes la politica de privacitat?");
alert (aceptacion) ;

</script>

El valor que devuelve el confirm es siempre un tipo Boolean (true o false).

© filewss

Acceptes la politica de privacitat?

Coneetla

CONVERSION DEL TIPO DE VALORES

Si queremos convertir un valor tipo a otro, podemos emplear funciones generales del JavaScript que necesitan
que le pongamos el valor original entre paréntesis y nos devuelve el mismo valor pero como un tipo diferente:

Boolean() var x = "1"; // string Devuelve un booleano convertido desde
x = Boolean(x); cualquier otro tipo de valor.
// Boolean true

Number() var x = "4.5"; // string Devuelve un numero convertido desde una
x = Number (x) ; cadena de texto.
// number 4.5

parseFloat() var x = "4.5"; // string Devuelve un numero de punto flotante
x = parseFloat (x); convertido desde una cadena de texto.
// number 4.5

parselnt() var x = "4.5"; // string Devuelve un numero entero convertido desde
x = parselnt (x); una cadena de texto.
// number 4

String() var x = 6; // number Convierte el valor de un objeto en una cadena
x = String(x): de texto.

// string '6'

<script>
var edad = prompt ("Dime tu edad"); // string
edad = Number (edad); //number

</script>

(Il
Y

SERVICIO PUBLICO

Generalitat .

DE EDUCACION, FORMACION PROFESIONAL SEPE

de Catalunya 2% "= ==

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,

Formacié Professional i Esport i del Servei Public d’Ocupacid Estatal (SEPE)

19

OPERADORES

Servei d'Ocupacio
de Catalunya

2= mat@roin

Los operadores nos permiten aplicar cambios, calculos o procesos sobre los valores de las variables segin su

tipo, por lo tanto es muy importante controlar el tipo de las variables para asegurarnos de que el operador se

aplique correctamente. Asi, categorizamos a los operadores segun el tipo de variable a quien se aplica.

El primer operador que ya hemos visto es el de asignacién para poder hacer las instanciaciones:

Tipo de operador

TEXTO

Ejemplo
nombreCliente = "Maria";

Explicacion
Permite asignar un valor a una variable en una
instanciacion.

Los operadores de texto se pueden utilizar en las cadenas de texto y variables tipo string:

Tipo de operador

\n

\t

NUMEROS

Ejemplo

nomClient = "Maria";
cognomClient = 'Garcia';
alert (nomClient + ' ' +
cognomClient)

nomClient += ' ';

nomClient += cognomClient;

alert ("Benvingut/da
S{nomClient}
${cognomClient}) ;

alert ("Benvinguts a \"La
Meva Web\"!");

alert (' Benvinguts a
L\ 'Hospitalet');

alert ("Benvinguts a:\n
\"La Meva Web\"!");

alert ("Benvinguts a:\n\t
\"La Meva Web\"!");

Explicacion

Permite definir un valor tipo texto (string).
Permite definir un valor tipo texto (string).
Permite concatenar dos valores en una misma
cadena de texto.

Asignacion con concatenacion: permite
concatenar al mismo valor que ya esta en una
variable

El acento abierto permite hacer templates:
estructuras tipo texto donde podemos emplear
libremente las otras comillas y donde afiadimos
valores JavaScript con ${}

Comillas literales: con la barra de escape
podemos afiadir " sin que se interpreten como
un operador.

Comillas literal: con la barra de escape podemos
afiadir ' sin que se interprete como un operador.
Salto de linea: con la barra de escape podemos
afiadir un salto de linea en una ventana alert,
prompt o confirm.

Tabulacién: con la barra de escape podemos
afadir una tabulacién en una ventana alert,
prompt o confirm.

Los operadores numéricos permiten hacer célculos sobre valores tipo number:

Tipo de operador
+

A Generalitat .
Y, de Catalunya

Ejemplo
var num = 7 + 3; // 10
var num = 7 - 3; // 4
var num = 7 * 3; // 21
var num = 7 / 3; // 2,33
var num = 7 % 3; // 1
var num = 7;
num += 3; // 10

¥ MINISTERIO

et S
4 2 Y DEPORTES

" DE EDUCACION, FORMACION PROFESIONAL

Explicacion

Suma.

Resta.

Producto.

Fraccion.

Mddulo: devuelve el residuo de una division.
Asignacion con suma: suma el numero al valor
de la variable.

SERVICIO PUBLICO
DE EMPLEO ESTATA

Sl % MINISTERIO ormr

Ak 2R SEPE
YECONOMIAsociAL =1 =

2 2 SERVEI PUBLIC

D'OCUPACIO ESTATAL

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,

20

Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

Servei d'Ocupacio
de Catalunya

2= mat@roin

= var num = 7; Asignacion con resta: resta el nimero al valor de
num -= 3; // 4 la variable.

*= var num = 7; Asignacién con multiplicacién: multiplica el
num *= 3; // 21 nimero al valor de la variable.

/= var num = 7; Asignacion con fraccion: hace la fraccion del
num /= 3; // 2.33 nimero al valor de la variable.

++ var num = 7; Incremento unitario: suma 1 al valor de la
num ++; // 8 variable.

— var num = 7; Decremento unitario: resta 1 al valor de la
num --; // 6 variable.

<script>

var edad = prompt ("Dime tu edad"); // string

edad = parselnt (edad); //number

edad ++;

alert (" ;El préximo aniversario cumplitas ${edad} afos!’);
</script>

LOGICOS Y DE COMPARACION

Estos operadores de comparacién devuelven siempre un valor boolean de true o false:

Tipo de operador Ejemplo Explicacion

== var comp = 7 == 3; // false Igualdad: compara dos valores.

=== var comp = 7 === '7'; //false Identidad: compara dos valores y su tipo.

1= var comp = 7 != 3; // true Diferencia.

> var comp = 7 > 3; // true Mayor que: compara dos valores.

>= var comp = 7 >= 3; // true Mayor o igual que: compara dos valores.

< var comp = 7 < 3; // false Menor que: compara dos valores.

<= var comp = 7 <= 3; // false Menor o igual que: compara dos valores.

&& var comp = 7 > 3 && 3 > 7; Operador Y ldgico: concatena dos
// false comparaciones.

I var comp = 7 > 3 [| 3 > 7; Operador O ldgico: concatena dos
// true comparaciones.

! var comp = !true; // false Operador de negacion: niega el valor.

La operacidn légica AND obtiene su resultado combinando dos valores booleanos. El operador se indica mediante
el simbolo && y su resultado solamente es true si los dos operandos son true:

variablel variable2 variablel && variable2
true true true
true false false
false true false
false false false

La operacion légica OR también combina dos valores booleanos. El operador se indica mediante el simbolo || y
su resultado es true si alguno de los dos operandos es true:

SERVICIO PUBLICO
DE EMPLEO ESTATAL

AT\ Generalitat
Y, de Catalunya

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

v & MINISTERIO Sl % MINISTERIO
= DE EDUCACION, FORMACION PROFESIONAL ST 0 DETRABAIO S E P E
Y DEPORTES Y ECONOMIASOCIAL P i=l 1=
2 a2 SERVE PUBLIC
DOCURGIS ESTATAL

P}
B/

21

Servei d'Ocupacio
de Catalunya

2= mat@roin

variablel variable2 variablel | | variable2
true true true
true false true
false true true
false false false

En el siguiente ejemplo se plantea dos posibilidades: que el visitante acepte o no la politica de privacidad y que
la edad que ha informado sea superior o igual a 18. Si se cumplen ambas posibilidades (ambas tienen un valor
true) tendremos true en la variable controlAcceso; si cualquiera de las variables aceptacion o controlEdad tienen

un valor false, tendremos un false en la variable controlAcceso:

edad = parselnt (prompt ("Dime tu edad ")) ;
controlEdat = edad >= 18

controlAcceso = aceptacion && controlEdat;
alert (" ¢;Puedes acceder? ${controlAcceso}) ;
</script>

<script>
var aceptacion = false, edad = 0, controlEdad = false, controlAcceso = false;
aceptacion = confirm("Aceptas la politica de privacidad?");

PRIORIDAD DE LOS OPERADORES

Segun el orden de prioridad, los operadores se ejecutan antes o después:

1. OPERADORES DE CALCULO DE 12 ORDEN:
e +suma
e -resto
e *multiplicacidn
e /divisidn (fraccién)
e %residuo de una division
2. OPERADORES CONDICIONALES DE 22 ORDEN:

3. OPERADORES LOGICOS DE 32 ORDEN:

&&
I

OPERADORES DE CALCULO DE 42 ORDEN:

+=; -=; *=; [=; %= operador matematico combinado

OPERADORES DE CALCULO DE 52 ORDEN:

++ incremento unitario

-- decremento unitario

AN Generalitat £ o | i

\ de Catalunya

ol “ MINISTERIO
"Q DE EDUCACION, FORMACION PROFESIONAL S ‘& DETRABAJO S E P E
o Y DEPORTES Y ECONOMIA SOCIAL ot S B R
2 SERVEI PUBLIC
D'OCUPACIO ESTATAL

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,

Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

22

Servei d'Ocupacio
de Catalunya

ESTRUCTURAS DE CONTROL

Los programas que se pueden realizar utilizando solamente variables y operadores son una simple sucesion lineal
de instrucciones bdasicas: el navegador lee cada sentencia, la ejecuta una Unica vez y salta a la siguiente hasta
que se acaba el documento.

No obstante, no se pueden realizar programas que muestren un mensaje si el valor de una variable es igual a un
valor determinado y no muestren el mensaje en el resto de casos. Tampoco se puede repetir de manera eficiente
una misma instruccion, como por ejemplo sumar un determinado valor a todos los elementos de un array.

Para realizar este tipo de programas son necesarias las estructuras de control de flujo, que son instrucciones del
tipo "si se cumple esta condicion, hazlo; si no se cumple, haz eso otro". También existen instrucciones del tipo
"repite esto mientras se cumpla esta condicion".

Las estructuras de control de flujo permiten controlar el flujo de ejecucion del codigo delimitando
qué parte del codigo se ejecuta o cudntas veces lo hace.

Si se utilizan estructuras de control de flujo, los programas dejan de ser una sucesion lineal de instrucciones para
convertirse en programas inteligentes que pueden tomar decisiones en funcidn del valor de las variables.

Las estructuras de control de flujo se caracterizan por cerrar el codigo a evaluar entre llaves de apertura { y cierre
}. Estas llaves delimitan un ambito —scope- y por lo tanto podemos declarar variables con let y que estas variables
s6lo sean validas dentro de las llaves.

Otra caracteristica es la capacidad de anidar una estructura dentro de otras, de forma que podemos crear
algoritmos complejos con multiples respuestas.

CONDICIONES

Cuando queremos programar diferentes respuestas u opciones en nuestro cddigo, lo hacemos seglin una
condicion: si se cumple, damos una respuesta, si no, damos otra respuesta. Es decir: como programadores
debemos dejar en el cddigo todas las opciones que necesitamos plantear, pero en la ejecucion de este cédigo
s6lo se mostrara la opcidn adecuada en ese momento.

Para plantear las condiciones tenemos diferentes estructuras: el IF nos permite plantear una posibilidad y el ELSE
complementa la contraria; por otra parte, el SWITCH nos permite plantear diferentes posibilidades.

IF
La estructura mas utilizada en JavaScript y en la mayoria de lenguajes de programacién es la estructura if. Se
emplea para tomar decisiones en funcion de una condicidn. Su definicion formal es:

<script>
if (condicién) {

}
</script>

Si la expresién contenida entre paréntesis o condicion devuelve un valor true (por ejemplo, una comparacion)
se ejecutan todas las instrucciones —sentencias- que se encuentran dentro de {...}. Si la condicién no se cumple
(es decir, si su valor es false) no se ejecuta ninguna instruccién —sentencias- contenida en {...} y el programa
continua ejecutando el resto de instrucciones —sentencias- del script.

2= mat@roin

AT\ Generalitat
Y, de Catalunya

SERVICIO PUBLICO
DE EMPLEO ESTATA

SEPE

MINISTERIO Sl % MINISTERIO
S " DEEDUCACION, FORMACION PROFESIONAL ST 0 DETRABAIO
| o Y DEPORTES Y ECONOMIA SOCIAL
= a2 SERVEI PUBLIC

D'OCUPACIO ESTATAL

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

23

Servei d'Ocupacio
de Catalunya

2= mat@roin

<script>
var aceptacion = false, edad = 0, controlEdad = false, controlAcceso = false;
aceptacion = confirm("Aceptas la politica de privacidad?");
edad = parselnt (prompt ("Dime tu edad ")) ;
controlEdat = edad >= 18
controlAcceso = aceptacion && controlEdat;
if (controlAcceso === true) {
alert (" iBienvenido/da!");
}
if (controlAcceso === false) {
alert ('No puede acceder’);
}

</script>

La expresion dentro de los paréntesis debe devolver un valor booleano de true, y en el ejemplo anterior la
variable controlAcceso ya es de este tipo, por lo tanto la primera comparacién es redundante, y la segunda
comparacion se puede simplificar si empleamos el operador de negacion:

<script>
var aceptacion = false, edad = 0, controlEdad = false, controlAcceso = false;
aceptacion = confirm("Aceptas la politica de privacidad?");
edad = parselnt (prompt ("Dime tu edad ")) ;
controlEdat = edad >= 18
controlAcceso = aceptacion && controlEdat;
if (controlAcceso) {
alert (" jBienvenido/da!");
}
if ('controlAcceso) {
alert ('No puede acceder’);
}
</script>

En este ejemplo se plantea las dos posibilidades de la variable controlAcceso: que sea true o false, pero segun las
respuestas a las preguntas de aceptacion y edad sélo tendrd un unico valor, por lo tanto sélo una de las
condiciones se cumplird y uno de los alert se ejecutara.

IF ... ELSE
Normalmente, las decisiones a realizar no son del tipo "si se cumple la condicion, hazlo; si no se cumple, no hagas
nada", sino suelen ser del tipo "si se cumple esta condicidn, hazlo; si no se cumple, haz eso otro".

Para este segundo tipo de decisiones, existe una variante de la estructura if lamada if... else. Su definicién formal
es la siguiente:

<script>
if (condicidén) {

} elé(.a.{

}
</script>

Si la expresién contenida entre paréntesis o condicion devuelve un valor true (por ejemplo, una comparacién)
se ejecutan todas las instrucciones —sentencias- que se encuentran dentro del primer {...}. Si la condicidn no se
cumple (es decir, si su valor es false) se ejecutan todas las instrucciones —sentencias- que se encuentran dentro
del segundo {...} precedido de else.

SERVICIO PUBLICO
DE EMPLEO ESTATAL

MINISTERIO
DE TRABAJO E;EEF)EE
Y ECONOMIASOCIAL P i=l 1=

SERVE] PUBLIC
D'OCUPACIO ESTATAL

A Generalitat
Y, de Catalunya

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

v ¥ MINISTERIO
"Q DE EDUCACION, FORMACION PROFESIONAL
o Y DEPORTES

24

Servei d'Ocupacio
de Catalunya

2= mat@roin

El comando else no puede ir solo: siempre acompanard a un if para definir la situacién contraria o false de la

condiciodn.

<script>
var aceptacion = false, edad = 0, controlEdad = false, controlAcceso = false;
aceptacion = confirm("Aceptas la politica de privacidad?");

edad = parselnt (prompt ("Dime tu edad ")) ;
controlEdat = edad >= 18
controlAcceso = aceptacion && controlEdat;
if (controlAcceso) {
alert (" jBienvenido/da!");
}
else {
alert ('No puede acceder’);
}

</script>

En este ejemplo, hemos sustituido el segundo if y su condicion por un else: en ambas condiciones se evaluaba la
misma variable, por lo tanto, podemos simplificar la estructura de control de flujo condicional a una sola
evaluacion con dos posibilidades.

Como se menciona al principio del capitulo, las estructuras de control se pueden anidar si queremos dar
diferentes respuestas. Por ejemplo, segln este diagrama queremos dar diferentes respuestas y a continuacion

se plantea el cddigo con if anidados:
Visitante carga el
documento

iAceptas la politica
de privacidad?

Mo puede acceder sin
Di tu edad aceptar la politica de
privacidad

£ Es mayor
de edad?

No se permite el

iBienvenido/dal ACCeso a menores de
edad

<script>
var aceptacion = false, edad = 0;
aceptacion = confirm(":;Aceptas la politica de privacidad?");
if ('aceptacion) {
alert ("No puede acceder sin aceptar la politica de privacidad ");
} else {
edad = parselnt (prompt ("Di tu edad "));
if (edad < 18) {

alert ("No se permite el acceso a menores de edad");
} else {
alert (";Bienvenido/da!") ;
}
}

</script>

A Generalitat ' =
f ‘ OF EMPLEG ESTATAL
¥ MINISTERIO ¥ MINISTERIO
=% DE EDUCACION, FORMACION PROFESIONAL DETRABAJO S E P E
Y ECONOMIA SOCIAL o

ékv A d e C at al u nya Y DEPORTES SERVE PUBLIC

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacid Estatal (SEPE)

By e
s B

25

Servei d'Ocupacio
de Catalunya

2= mat@roin

ELSE ... IF

Cuando necesitamos verificar varias opciones lo mas facil es utilizar else if, asi evitamos tener que anidar en
exceso. Es importante recordar que la primera condicion valida serd la que use el navegador, y que ignorara
todas las demds. Su definicion formal es la siguiente:

<script>
if (condicién) {

} else if (condicidén) {
} else if (condicidén) {
} else {

}
</script>

Si la primera condicidn es false, no se ejecuta y salta a la segunda; si ésta también es false, no se ejecuta y salta
a la tercera; y asi hasta que encuentra una condicion true que se ejecute o el Ultimo else.

Con el ejemplo anterior, quedaria asi el cédigo con else ... if:

<script>
var aceptacion = false, edad = 0;
aceptacion = confirm(";Aceptas la politica de privacidad?");
edad = parselnt (prompt ("Di tu edad ")) ;

if (!'aceptacion) {
alert ("No puede acceder sin aceptar la politica de privacidad ");
} else if (edad < 18) {
alert ("No se permite el acceso a menores de edad");
} else {
alert (";Bienvenido/da!") ;
}

</script>

TERNARIO

Para simplificar la estructura de una condicién tenemos el operador condicional ternario: no es un operador
como tal sino una estructura donde su definicion formal es la siguiente:

§condicion ? expresionTrue : expresionFalse

Es muy practica en el caso de instanciar una variable con dos posibilidades:

<script>
var edad = parselnt (prompt ("Di tu edad "));
var mensaje = (edad >= 18) ? ";Bienvenido/da!" : " No se permite el acceso a menores de edad";
alert (mensaje) ;

</script>

SWITCH

Hasta ahora las estructuras if permiten evaluar una condiciéon que puede ser true o false; pero si la condicidn
puede tener multiples valores, la estructura switch permite evaluar diferentes posibilidades llamadas casos. Cada
caso es un punto de entrada, pero hay que definir el final de cada caso con un break. Y si se da la situacidn que
ningln caso coincide, podemos establecer un resultado por defecto con el default:

§<script>

N Generalitat
Y, de Catalunya

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

SERVICIO PUBLICO
DE EMPLEO ESTATAL

MINISTERIO
DE TRABAJO E;EEF)EE
Y ECONOMIASOCIAL P i=l 1=

SERVE] PUBLIC
D'OCUPACIO ESTATAL

v ¥ MINISTERIO
"% DE EDUCACION, FORMACION PROFESIONAL
Y DEPORTES

b/
B Y s
s w

26

Servei d'Ocupacio
de Catalunya

2= mat@roin

switch (expresidén) {

case valorl:
sentencias;
break;

case valor2:
sentencias;
break;

case valor3:

case valor4d:
sentencias;

break;
default:
sentencias;
break;
}
</script>

Como los casos son solo puntos de inicio y no de final, podemos poner diferentes casos seguidos para que tengan
el mismo resultado. La expresién puede ser una variable tipo texto o numérica, los valores son las diferentes
posibilidades y a continuacion utilizamos los dos puntos ":" para indicar todas las sentencies que deben
ejecutarse hasta el break. Sin el break, se ejecutarian todas las sentencies hasta el cierre del switch.

<script>
const nombreUsuario = prompt ("Di tu nombre:");
var mensaje = "";
switch (nombreUsuario) {
case "Jordi":

mensaje = "Eso es pan comido.";
break;
case "Maria'":
mensaje = "De tal palo, tal astilla.";
break;

case "Pep":
case "Ona":

mensaje = "Mas vale prevenir que curar.";
break;
default:
mensaje = "No es oro todo lo que reluce.";
break;
}
alert (mensaje);
</script>
ISNAN()

Un caso especial es la funcién gobal isNaN () : es una funcién que devuelve un booleano segun el valor no es
un nimero —true- o si es un nimero —false-:

<script>
var edad = Number (prompt ("Di tu edad")), mensaje = "";
if (isNaN(edad)) {
mensaje = "!Hay que introducir una edad valida!";
} else if (edad >= 18) {
mensaje = "iBienvenido/da!";
} else {
mensaje = "No se permite el acceso a menores de edad.";
}
alert (mensaje) ;
</script>

¥ \ Ge ne ral Itat i " MINISTERIO MIIeTERIO) DE EMPLEO ESTATAL
' | = DE EDUCACION, FORMACION PROFESIONAL DETRABAJO
V) de Catalunya e 5 ibituoon SEPE
e D'OCUPACIO ESTATAL
Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

B\ we
s B

27

Servei d'Ocupacio
de Catalunya

2= mat@roin

BucCLES

El concepto de bucle hace referencia a la repeticién de sentencias tantas veces como haga falta sin la necesidad
de duplicar lineas de cédigo, por lo tanto, rompemos la linealidad de la ejecucién del navegador.

WHILE
Permite repetir las sentencies anidadas en las llaves mientras la condicidn sea true. Esto implica que necesitamos
una instanciacion inicial, una comparacidn que mantenga el bucle y una actualizacidn para evitar entrar en un

bucle infinito:
<script>
var control = valor; // inicializaciédn
while (control == valor) { // condicién
control = nuevoValor; // actualizacién
}
</script>

Un ejemplo es pedir un cierto tipo de dato, y no dejar continuar al usuario hasta que lo introduzca correctamente:

<script>
var edad = parselnt (prompt ("Di tu edad")), mensaje = "";
while (isNaN(edad)) {
alert ("!Hay que introducir una edad valida!");
edad = parselnt (prompt ("Di tu edad"));
}
mensaje =(edat>=18)? " Bienvenido/da!" : " No se permite el acceso a menores de edad ";
alert (mensaje) ;
</script>
DO ... WHILE

Si lo que necesitamos es hacer una accién como minimo una vez, y luego evaluar si hay que repetirla, podemos
utilizar la estructura do ... while porque justamente hace eso: primero ejecuta el contenido de las llaves y luego
evalua si hay que continuar:

<script>

do {

} while (condicién)
</script>

En el ejemplo anterior, pedimos dos veces la edad; por lo tanto, podemos simplificar el cddigo pidiéndolo siempre
una vez y después evaluar si hay que volver a pedirlo:

<script>
var edad = null, mensaje = "";
do {
mensaje =(edad===null)?"Di tu edad":"!Hay que introducir una edad valida!";

edad = parselnt (prompt (mensaje));
} while (isNaN (edad))

mensaje =(edat>=18)? ";Bienvenido/da!"™ : " No se permite el acceso a menores de edad ";
alert (mensaje) ;
</script>

f ! OF EMPLEO ESTATAL
s ¥ MINISTERIO MINISTERIO

';: DE EDUCACION, FORMACION PROFESIONAL

s DE BHPLEC BSTATAL
< oese - SEPE
Y DEPORTES A ECONOMIA SOCIAL ot S B R

By e

SERVE] PUBLIC

WV de Catalunya =Sz

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,

Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

28

Servei d'Ocupacio
de Catalunya

2= mat@roin

FOR
Este bucle presenta una estructura optimizada para controlar la ejecucién de la iteracién de manera numérica,
es decir, para especificar exactamente cuantas veces queremos que se haga el bucle.

El bucle for se divide en tres partes separadas por un punto y coma:

1. Expresion inicial: serd todo aquello que se ejecutara al iniciarse el bucle. Normalmente la declaracion
de una variable numérica instanciada con el valor inicial.

2. Condicién: sera evaluada antes de cada iteracion. Este es el Unico parametro obligatorio y es una
condicion de comparacion con la variable inicial que mantiene el bucle mientras devuelve true.

3. Expresion de actualizacion: se ejecutard al final de cada iteraciéon. Hay que aumentar o disminuir el
valor de la variable inicial para que la condicidn llegue un momento que vuelva false y evitar entrar en
un bucle infinito.

<script>
for (inicializacidén; condicidn; actualizacidn) {

}
for (let i = 1; 1 <= 10; i ++) {
console.log (i) ;

}
for (let i = 10; i >=1; 1 --) {
console.log (i) ;
}
</script>

Normalmente, la variable que controla los bucles for se llama i, ya que recuerda a la palabra indice y su nombre
tan corto ahorra mucho tiempo y espacio. Si hay que hacer bucles anidados podemos utilizar los nombres de
variables j o k.

La variable inicial se declara dentro de la estructura de control, por lo tanto, tiene un ambito —scope- local, por
lo tanto, es el ejemplo de uso del let. Estos mismos ejemplos se pueden hacer con while, pero no queda el cédigo
tan ordenado como con el for:

<script>
var 1 = 1; // inicializacién
while (i <= 10) { // condicién

console.log (1) ;
i ++; // actualizacién
}
</script>

FOR ... INIFOR... OF
Un caso especial de bucles son estas estructuras for pensadas para recorrer matrices —arrays-, por lo tanto los
veremos mas adelante.

SENTENCIAS BREAK Y CONTINUE

La estructura de control for es muy sencilla de utilizar, pero tiene el inconveniente de que el nimero de
repeticiones que se realizan sélo se pueden controlar mediante las variables definidas en la zona de actualizacion
del bucle. Las sentencias break y continue permiten manipular el comportamiento normal de los bucles for para
detener el bucle o para saltarse algunas repeticiones. Concretamente, la sentencia break permite acabar de
manera abrupta un bucle y la sentencia continue permitiendo saltarse algunas repeticiones del bucle.

‘ ! DX VPO BTATL
ol v & MINISTERIO Sl % MINISTERIO

o

ired i =
o 4 DE EDUCACION, FORMACION PROFESIONAL o "q DETRABAJO S EPE

/] | Y DEPORTES
Wl de Catalunya =Us: SO oo D

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

29

Servei d'Ocupacio
de Catalunya

2= mat@roin

FUNCIONES

En programacién es muy frecuente que un determinado procedimiento de calculo definido por un grupo de
sentencias deba repetirse varias veces, ya sea en un mismo programa o en otros programas, lo que implica que
se deba escribir tantos grupos de aquellas sentencias como veces aparezca este proceso.

La herramienta mas potente con la que se cuenta para facilitar, reducir y dividir el trabajo en programacion, es
escribir aquellos grupos de sentencias una sola y Unica vez bajo la forma de una funcién.

Un programa es un desarrollo complejo de realizar y por lo tanto es importante que esté bien estructurado y
también que sea inteligible para las personas. Si un grupo de sentencias realiza una tarea bien definida, entonces
puede estar justificado el aislar estas sentencias formando una funcidn, aunque resulte que sélo se la nombre o
utilice una vez.

Hasta ahora hemos visto cémo resolver un problema planteando un unico algoritmo. Con funciones podemos
segmentar un programa en varias partes. Ante un problema, planteamos un algoritmo, este puede constar de
pequefios algoritmos.

Una funcion es un conjunto de sentencias encapsuladas que puede ser utilizado desde diferentes
partes de un programa tantas veces como haga falta.

Las funciones de JavaScript son el alma de este lenguaje, por ello se consideran ciudadanos de primera clase, una
entidad que soporta todas las operaciones generalmente disponibles para otras entidades: estas operaciones
normalmente incluyen ser pasados como argumento, retornados de una funcidn y asignados a una variable.

A partir de ahora veremos la aplicacion de los principios de la programacion funcional en otros
apartados de este manual.

DECLARACION E INVOCACION

Podemos declarar las funciones de dos formas: instanciando una variable con una funcién anénima o utilizando
el comando function y dando un nombre Unico siguiendo las mismas directrices al dar un nombre a una variable.
La primera diferencia entre una variable y una funcién es que en una variable almacena datos, y en una funcion
almacena sentencias; la segunda, que al declarar una funcién usamos los paréntesis "()": en el siguiente apartado

explicaremos su uso.

<script>
// declaracién en una variable con una funcidén andénima:
const miFuncion = function () {

}
// declaracién con nombre:
function miFuncion () {

}
</script>

Una vez declarada la funcién, todo el cddigo dentro de sus llaves quedara a la espera y el navegador no lo
ejecutara hasta que la funcién sea invocada a través de su nombre:

‘ ! DX LG ESTATR
[¥ MINISTERIO S Es ¥ MINISTERIO

o
ooy 4
b3 4 DE EDUCACION, FORMACION PROFESIONAL) "q DETRABAJO S E P E

I
I f | Y DEPORTES
Wl de Catalunya =Ws: LR

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

30

Servei d'Ocupacio
de Catalunya

2= mat@roin

<script>
// declaracién con nombre:
function miFuncion () {

}
// invocacidén a través del nombre:
miFuncion () ;

</script>

Dentro de las funciones podemos declarar variables, pero como el contenido se cierra entre llaves "{}", las
funciones generan su propio ambito —scope- y podemos utilizar variables globales (declaradas fuera de las
funciones) o variables locales (declaradas dentro de las funciones con let).

PARAMETROS Y ARGUMENTOS

Cuando queremos hacer funciones con un nivel de abstraccién realmente alto, tenemos que recurrir al
aislamiento. De tal forma que nuestra funcion no dependa de ciertas variables o datos externos a ella.

Cuando declaramos una funcidn, podemos incluir ciertos parametros entre los paréntesis que actuaran como
referencias. Funcionaran internamente igual que variables locales, de tal forma que a la hora de ejecutar la
funcién podremos pasarle ciertos argumentos —valores- y asi tener funciones con un mayor nivel de abstraccion.

Al declarar una funcion podemos afiadir tantos pardmetros como necesitamos separados por comas, pero las
buenas practicas de programacion lo limitan a tres; si necesitas mads, es necesario que desgloses la funcion en
varias mas simples. Cada parametro tendrd un nombre propio, como si fuera una variable, pero al ser local se
pueden repetir los mismos nombres entre diferentes funciones. Y en la invocacién, pasamos los argumentos —
valores- de cada parametro en el mismo orden y también separado por comas ",":

<script>
// declaracién con parametros
function miFuncion (paraml, param2, param3) {

}

// invocacidén con argumentos:

miFuncion (argl, arg2, arg3);
</script>

En el siguiente ejemplo, declaramos una funcién con un parametro que se utiliza dentro de la funcién como una
variable local, y la invocamos varias veces: en cada invocacién pasamos un valor diferente como argumento:

<script>
function saluda(nombre) {
alert ("Hola " + nombre) ;
}

saluda ("ot");
saluda ("Marta");
</script>

FUNCIONES QUE DEVUELEN UN VALOR

Otro de los puntos fuertes a la hora de plantear estructuras de cdédigo modulares y reutilizables, es tener en
cuenta el retorno. El retorno nos permite devolver un valor al terminar de ejecutarse la funcion. Este valor puede
ser cualquier tipo de dato de los muchos que tenemos en JavaScript. Para que las funciones sean modulares y

SERVICIO PUBLICO
DE EMPLEO ESTATAL

AT Generalitat
Y, de Catalunya s Yoo AUIDE YECONGHASSSREY = s

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

: v & MINISTERIO Sl % MINISTERIO

= DE EDUCACION, FORMACION PROFESIONAL | 3 DETRABAJO SEPE
- S bt S
2 ~ sevarumc

31

Servei d'Ocupacio
de Catalunya

2= mat@roin

reutilizables es necesario que no todas finalicen un proceso, por ejemplo mostrar un alert, sino que hagan un
proceso y devuelvan un valor, y aquel que haya invocado la funcién recoja este valor y continte procesandolo.

Para hacer que una funcion devuelva un valor, solo hay que utilizar el comando return al final del cédigo de la

misma:
<script>
function mensaje (texto) {
return "Hola " + texto;
}
function saluda (nombre) {
alert (mensaje (nombre))
}
saluda ("Ot");
saluda ("Marta");
</script>
ANIDAMIENTO

Dentro de las llaves de las funciones podemos anidar otras estructuras ya vistas como condiciones y bucles, pero
también otras funciones que sélo se podran invocar dentro de la funcién principal. Esto, por un lado, puede
complicar el desarrollo del cddigo, pero por el otro nos da muchas mas posibilidades de modularizacién y
reutilizacion.

<script>
var nombre = null;
function alerta (tipo) {
let texto = "";
function controlEdad () {
let edad = null, mensaje = "";
do {
mensaje =(edad===null) ? "Di tu edad" : "jHay que introducir una edad valida!";
edad = parselnt (prompt (mensaje));
} while (isNaN (edad))
mensaje=(edad>=18) ?" jBienvenido/da!":"No se permite el acceso a menores de edad";
return mensaje;
}
function preguntaNombre () {
if (nombre === null) {
nombre = prompt ("Cudl es tu nombre?");
}
return "Hola " + nombre;
}
switch (tipus) {
case "edad":
text = controlEdad();
break;
default:
text = preguntaNombre () ;
break;
}
return text;
}
alert (alerta ("edad"));
alert (alerta ("saludo"));
</script>

f ! OF EMPLEO ESTATAL
s ¥ MINISTERIO MINISTERIO

T DE EDUCACION, FORMACION PROFESIONAL DETRABAJO S E P E
Y DEPORTES Y ECONOMIA SOCIAL ot S B R

1, de Catalu nya wa o
Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

B\ we
s B

32

Servei d'Ocupacio
de Catalunya

2= mat@roin

FAT ARROW

Las funciones fat arrow se utilizan para omitir la palabra function y simplificar la estructura original de las
funciones, pero esta estructura es limitada y no se puede usar en todas las situaciones. Esta simplificacidon
también permite que el return sea implicito si no se usan las llaves "{}"; incluso podemos ahorrarnos los
paréntesis "()" si tenemos un Unico parametro. Después, la invocacion se hace como siempre a través del
nombre.

Desglose de la funcidn flecha:
Segun la definicién de una funcidn tradicional tendriamos la siguiente declaracion:

<script>
function duplicar (a){
return a * 2;
}

</script>

Pero con las funciones flecha lo podemos simplificar:
1. Elimina la palabra function y coloca la flecha entre el pardmetro y la llave de apertura:

<script>
const duplicar = (a) => {
return a * 2;
}

</script>

2. Sacalas llaves del cuerpo y la palabra return: el retorno esta implicito:

<script>
const duplicar = (a) => a * 2;
</script>

3. Suprime los paréntesis de los parametros si sélo hay un Unico parametro:

<script>
const duplicar = a => a * 2;
</script>

Una de las razones por las que se introdujeron las funciones flecha fue para eliminar complejidades del ambito
this y hacer que la ejecucion de funciones sea mucho mas intuitiva. En las funciones tradicionales, de manera
predeterminada, this estd en el dmbito del window (del documento), pero en las funciones flecha no
predeterminan this en el ambito o alcance del documento: lo ejecutan en el ambito o alcance en que se crean.
Este concepto de this se desarrolla mas adelante en este manual.

FUNCIONES GENERALES

Las funciones generales son funciones ya definidas en el JavaScript; en este manual ya se han comentado algunas
como las funciones de conversion de tipo de variable o para evaluar si un valor es 0 no un nimero, pero existen
algunas mas. La mas destacable es la funcion eval() que permite evaluar una expresién de texto aportada como
argumento como si fuera una sentencia:

<script>
const texto = "2 + 3";
alert (eval (texto));
</script>

SERVICIO PUBLICO
DE EMPLEO ESTATAL

v & MINISTERIO Sl % MINISTERIO
= DE EDUCACION, FORMACION PROFESIONAL | 3 DETRABAJO SEPE

AT Generalitat
Y, de Catalunya s Yoo L R

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,

»\}
L

Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

33

Servei d'Ocupacio
de Catalunya

2= mat@roin

EVENTOS

En la introduccién de este manual se explica que los eventos son otra forma de incluir cddigo JavaScript en el
codigo HTML como atributos de las etiquetas: el valor del atributo es el cddigo JavaScript:

| <button type="button" evento="sentencias;">Botén</button>

Los eventos son las diferentes formas que tenemos de interactuar con los diferentes elementos —etiquetas- del
codigo HTML del documento. Una misma etiqueta puede tener asociados diferentes eventos.

Pero dentro de estas comillas estamos muy limitados para afiadir todas las estructuras que hemos visto hasta
ahora porque no podemos afiadir el cddigo en diferentes lineas y el codigo se ofusca mucho, y tampoco podemos
emplear comillas dobles. Por lo tanto, los eventos son una forma ideal de combinar con las funciones: podemos
declararlas en los scripts e invocarlas dentro de los eventos:

<script>
const doblar = a => a * 2;

</script>

<p>
<button type="button" onclick="alert(doblar(3));">Doblar 3</button>
<button type="button" onclick="alert(doblar(7));">Doblar 7</button>

</p>
Nombre del evento como atributo Definicion
onblur Cuando un elemento de formulario pierde el foco
onchange Cuando el valor de un campo de formulario es modificado
onclick Cuando se hace clic con el botdn del ratén
oncontextmenu Cuando se hace clic con el botén alternativo del ratén
ondbilclick Cuando se hace doble clic en un objeto
onfocus Cuando un elemento de formulario adquiere el foco
oninput Cuando se estd modificando un campo de formulario
onkeydown Cuando se presiona una tecla
onkeypress Cuando se presiona una tecla
onkeyup Cuando se deja de presionar una tecla
onload Cuando una pagina o imagen acaba de cargarse
onmousedown Cuando se pite el boton del ratén
onmousemove Cuando se mueve el ratén
onmouseout Cuando el cursor del raton sale del elemento
onmouseover Cuando el cursor del ratdn se pone encima
onmouseup Cuando se deja ir el botdn del ratén
onreset Cuando se pite el botén de reset de un formulario
onresize Cuando se modifica el tamafio de una ventana
onselect Cuando se selecciona texto de un campo de formulario
onsubmit Cuando se pite el boton sumido de un formulario
onwheel Cuando la rueda del ratén sube o baja sobre un elemento

En el siguiente ejemplo se ve el evento onsubmit y oninput aplicado a un formulario:

<form action="" onsubmit="return confirm(';Quieres enviar el formulario?') ;">
<input type="text" name="form" value="jEnviado!" oninput="alert (';jCambio!') ;">
<button type="submit">Enviar</button>

</form>

‘ ! DX VPO BTATL
ol v & MINISTERIO Sl % MINISTERIO

o

ired i =
o 4 DE EDUCACION, FORMACION PROFESIONAL o "q DETRABAJO S EPE

/] | Y DEPORTES
Wl de Catalunya =Us: SO oo D

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

34

Servei d'Ocupacio
de Catalunya

2= mat@roin

OBJETOS INTEGRADOS DEL LENGUAJE

Son los objetos nativos del lenguaje, definidos por la especificacion ECMAScript. Existen siempre,
independientemente de donde se ejecute JavaScript. También se llaman tipo nativos (native objects) o
constructores nativos (native constructores). Estos objetos forman parte del nucleo del lenguaje: no los creas tu,
ya estan cuando arranca el motor de JavaScript.

Como ya estan creados, funcionan como plantillas que podemos instanciar en variables con la funcion
constructora new. Estos objetos nos proporcionan formas mas complejas para manipular la informacion gracias
a que tienen propiedades y métodos.

Podemos imaginar los objetos del JavaScript como los objetos fisicos reales: si cogemos un rotulador, este tiene
propiedades —informacién- como la longitud, volumen o color, pero también tiene métodos —acciones- como
destapar, pintar o tapar.

Como tenemos los objetos ya definidos, sus propiedades y métodos también estan ya definidos, es decir, tienen
nombres ya reservados. Sintacticamente, utilizaremos la funcién constructora new para crear un objeto nativo:

<script>
const texto = new String (" jHola mundo!");
</script>

A partir de ahora, la variable texto serd un nuevo objeto (en este caso string) y podemos aplicar propiedades y
métodos con la sintaxis del punto ".". Los métodos, al ser acciones, son funciones ya predefinidas y se escriben
con paréntesis "()" porque pueden tener argumentos:

<script>
const texto = new String (" j;Hola mundo!");
console.log(texto.length); // 12
console.log(texto.toUpperCase()); // ";HOLA MUNDO!"
</script>

TEXTO

El objeto String es el que nos permite manipular los textos, pero a nivel de aplicacion de métodos y propiedades,
una variable tipo texto también los recibe:

<script>
const saludol = new String("j;Hola mundo!");
const saludo2 = "jHola mundo!";
</script>
Propiedad Descripcion
length Devuelve la longitud de una cadena.
Método (argumentos) Descripcion
at() Devuelve un caracter indexado de una cadena.
charAt() Devuelve el caracter a un indice (posicion) especificado.
charCodeAt() Devuelve el Unicode del caracter en un indice especificado.
codePointAt() Devuelve el valor Unicode en un indice (posicion) de una cadena.

SERVICIO PUBLICO

DF EMPLED ESTATAL
v ¥ MINISTERIO

S .

V W General Itat £ MINISTERIO Ar=rsr

k A d e C a al u n a ; "Q 3%223%55?0"" FORMACION PROFESIONAL g ?EEE&BS{?IA . SEPE
t y _ OCUMCIG ESTATAL

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,

B\}

Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

35

Servei d'Ocupacio
de Catalunya

concat()
endsWith()
fromCharCode()
includes()
indexOf()

isWellFormed()
lastindexOf()

localeCompare()
match()

matchAll()

padEnd()
padsStart()
prototype
repeat()
replace()

replaceAll()
search()

slice()
split()
startsWith()
substr()
substring()

toLocaleLowerCase()
toLocaleUpperCase()

toLowerCase()
toString()
toUpperCase()
toWellFormed()

trim()
trimEnd()
trimStart()
valueOf()

2= mat@roin

Devuelve dos o0 mas cadenas unidas.

Devuelve si una cadena acaba con un valor especificado.

Devuelve los valores Unicode como caracteres.

Devuelve si una cadena contiene un valor especificado.

Devuelve el indice (posicidn) de la primera aparicién de un valor en una
cadena.

Retornos ciertos si una cadena esta bien formada.

Devuelve el indice (posicion) de la ultima aparicién de un valor en una
cadena.

Compara dos cadenas en la localizacion actual.

Busca una cadena por un valor, o una expresion regular, y devuelve las
coincidencias.

Busca una cadena por un valor, o una expresion regular, y devuelve las
coincidencias.

Pone una cadena al final.

Apade una cadena desde el principio.
Te permite afadir propiedades y métodos a un objeto.
Devuelve una nueva cadena con varias copias de una cadena.

Busca un patrén en una cadena y devuelve una cadena donde se
sustituye la primera coincidencia.

Busca un patrén en una cadena y devuelve una nueva cadena donde se
sustituyen todas las coincidencias.

Busca en una cadena un valor, o expresion regular, y devuelve el indice
(posicion) de la coincidencia.

Extrae una parte de una cadena y devuelve una nueva cadena.

Divide una cadena en una matriz de subcadenas.
Comprueba si una cadena empieza con caracteres especificados.
Depreciado. Utiliza substring() o slice() en lugar de eso.

Extrae caracteres de una cadena, entre dos indices (posiciones)
especificados.

Devuelve una cadena convertida a letras minusculas, utilizando la
localizacidn del anfitridn.

Devuelve una cadena convertida a mayusculas, utilizando la localizacion
del anfitrion.

Devuelve una cadena convertida a letras minusculas.

Devuelve una cadena o un objeto cadena como cadena.
Devuelve una cadena convertida a letras mayusculas.

Devuelve una cadena donde “sustitutos solitarios” se sustituyen por el
caracter de sustitucion Unicode.
Devuelve una cadena con espacios en blanco eliminados.

Devuelve una cadena con espacios en blanco eliminados desde el final.
Devuelve una cadena con espacios en blanco eliminados desde el inicio.

Devuelve el valor primitivo de una cadena o de un objeto cadena.

SERVICIO PUBLICO
DE EMPLEO ESTATA!

A Generalitat .

¥ MINISTERIO Sl % MINISTERIO
S "Q DEEDUCACION, FORMACION PROFESIONAL ST 0 DETRABAIO S E P E
g& / d e C at al u nya 1 S Y DEPORTES YEconoMiasociaL =l =
J g 2 2 SERVEI PUBLIC

D'OCUPACIO ESTATAL

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

36

Servei d'Ocupacio
de Catalunya

2= mat@roin

NUMERO

El objeto integrado Math nos aporta infinidad de recursos matematicos avanzados como la constante de Euler,
gestion de logaritmos, senos, cosenos, tangentes... Cada lector debe indagar y valorar lo que realmente quiere
usar, ya que muchos de estos métodos y propiedades van mas alld de nuestros objetivos, y no aportan
directamente valor al contexto de aprender a programar en JavaScript. Pero si hay algunos métodos que pueden

ser utiles:
Método (argumentos) Descripcién
ceil(x) Devuelve x, redondeado hacia arriba al entero mas cercano.
floor(x) Devuelve x, redondeado hacia abajo al entero mas cercano.
max(x1,x2,..) Devuelve el nimero con el valor mas alto.
min(x1,x2,..) Devuelve el nimero con el valor mas bajo.
random() Devuelve un niumero aleatorio entre Oy 1.
round(x) Redondea x al entero mas cercano.
<script>

var x = Math.random() * 10;
x = Math.ceil (x);
console.log(x);

</script>

El objeto integrado Number nos da acceso a métodos similares a las funciones generales:

Método (argumentos) Descripcién
isFinite() Comprueba si un valor es un nimero finito.
isinteger() Comprueba si un valor es un entero.
isNaN() Comprueba si un valor es NaN.
parseFloat() Analiza una cadena y devuelve un nimero.
parselnt() Analiza una cadena y devuelve un nimero entero.
toFixed(x) Formata un numero con x nuimeros de digitos después del punto
decimal.
toLocaleString() Convierte un nimero en una cadena, segun la configuracion local.
toPrecision(x) Formata un nombre a x longitud.
toString() Convierte un nimero en una cadena.
valueOf() Devuelve el valor primitivo de un nimero.
<script>

let x = Math.random() * 10;
console.log(x.toFixed(0));
</script>

ARRAY

Los arrays son estructuras que nos permiten almacenar muchos datos, sin tener que preocuparnos por el orden
o la organizacion interna: se organiza automaticamente. Otra forma mas sencilla de entenderlo, es imaginar que
un array es sencillamente como una lista de diferentes valores tipo texto, nimeros, booleanos e incluso otros
arrays anidados -llamados arrays multidimensionales-.

‘ ! DX LG ESTATR
[¥ MINISTERIO S Es ¥ MINISTERIO

o 'Q DE EDUCACION, FORMACION PROFESIONAL o ! "q DETRABAJO S E P E
Y DEPORTES Solt Ve §: S

W de Catalunya =: 2T VeeSiehnsoon OETL

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,

Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

37

Servei d'Ocupacio
de Catalunya

Podemos instanciar una variable con la cldusula new o de forma abreviada con corchetes "[]":

<script>
const nombresl =
const nombres2 =
</script>

new Array('Maria', 'José');
['Maria', 'José'];

Si queremos recuperar algun valor del array, solo hay que utilizar el nombre del objeto y entre los corchetes
afiadir un nimero de posicion, teniendo en cuenta que los valores de un array empiezan a ordenarse desde el 0:

<script>
// 0 1

const nombres = ['Maria', 'José'];

console.log(nombres[0]); // Maria
</script>
Propiedad Descripcion
length Devuelve la cantidad de elementos del array.

Con esta propiedad podemos hacer un bucle para recorrer todos los elementos de un array:

<script>
const nombres =
const longitud =
for (let i = 0;
console.log(nombres[i]

['"Maria', 'José'];
nombres.length;
i < longitud; 1 ++) {
)i

}
</script>

Pero en el captitulo de los bucles se mencionan las estructuras for ... in i for ... of que son estructuras mas
optimizadas para reccorer los valores de un array:

<script>

const nombres = ['Maria', 'José'];

for (let i in nombres) { // la variable "i" almacena las posiciones
console.log(nombres[i]);

}

for (let nombre of nombres) { // la variable "nombre" almacena el valor
console.log(nombre) ;

}

</script>

Método (argumentos)
at()

concat()
copyWithin()

Descripcion
Devuelve un elemento indexado de un array.
Une arrays y devuelve un array con los arrays unidos.

Copia elementos del array dentro del array, hacia y desde posiciones
especificadas.

entries() Devuelve un par clave/valor.

every() Comprueba si cada elemento de un array supera una prueba.

fill() Llena los elementos de un array con un valor estatico.

filter() Crea un nuevo array con cada elemento de un array que supera una
prueba.

find() Devuelve el valor del primer elemento de un array que supera una
prueba.

2= mat@roin

A Generalitat
Y, de Catalunya

SERVICIO PUBLICO
DE EMPLEO ESTATAL

v ¥ MINISTERIO

y MINISTERIO

S QDmmmmemwmmm. DE TRABAJO SEPE

'l o Y DEPORTES Y ECONOMIA SOCIAL e
SERVEI PUBLIC

D'OCUPACIO ESTATAL

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

38

findindex()

findLast()

findLastindex()

flat()
flatMap()
forEach()
from()
includes()
indexOf()
isArray()
join()

keys()

lastindexOf()

Servei d'Ocupacio
de Catalunya

2= mat@roin

Devuelve el indice del primer elemento de un array que supera una
prueba.

Devuelve el valor del ultimo elemento de un array que ha pasado una
prueba.

Devuelve el indice del ultimo elemento de un array que ha pasado una
prueba.

Concatena elements de subarray.

Mapea todos los elementos del array y crea un nuevo array plano.
Llama una funcidn para cada elemento del array.

Crea un array a partir de un objeto.

Comprueba si un array contiene el elemento especificado.

Busca un elemento en el array y devuelve su posicion.

Comprueba si un objeto es un array.

Une todos los elementos de un array en una cadena.

Devuelve un Objeto de Iteracidn del Array, que contiene las claves del
array original.

Busque un elemento en el array, empezando por el final, y devolviendo
su posicion.

map() Crea un nuevo array con el resultado de llamar a una funcién para cada
elemento del array.

of() Crea un array a partir de varios argumentos.

pop() Elimina el dltimo elemento de un array y devuelve este elemento.

push() Afnade nuevos elementos al final de una matriz y devuelve la nueva
longitud.

reduce() Reduce los valores de un arrebato a un solo valor (de izquierda a
derecha).

reduceRight() Reduce los valores de un array a un solo valor (de derecha a izquierda).

reverse() Invierte el orden de los elementos de un array.

shift() Elimina el primer elemento de un array y devuelve este elemento.

slice() Selecciona una parte de un array y devuelve el nuevo array.

some() Comprueba si alguno de los elementos de un array supera una prueba.

sort() Ordena los elementos de un array.

splice() Afiade o elimina elementos del array.

toReversed() Invierte el orden de los elementos del array (a un nuevo array).

toSorted() Ordena los elementos de un array (a un nuevo array).

toSpliced() Afade o elimina elementos del array (a un nuevo array).

toString() Convierte un array en una cadena y devuelve el resultado.

unshift() Afiade nuevos elementos al inicio de una matriz y devuelve la nueva
longitud.

valueOf() Devuelve el valor primitivo de un array.

with() Devuelve un nuevo array con elementos actualizados.

<script>

const nombres =

['Maria',

nombres.push('Carles');

nombres . forEach (

</script>

(nombre)

'Josep'];

=> {console.log(nombre);});

A\ Generalitat
Y, de Catalunya

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,

et
a

SERVICIO PUBLICO
DE EMPLEO ESTATA!

¥ MINISTERIO Sl % MINISTERIO
" DEEDUCACION, FORMACION PROFESIONAL S0 DETRABAO S E P E
o Y DEPORTES Y ECONOMIAsociAL =1 =
2 2 SERVEI PUBLIC

D'OCUPACIO ESTATAL

Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

39

Servei d'Ocupacio
de Catalunya

2= mat@roin

FECHA

El objeto integrado Date es el que nos permite recuperar informacién de la fecha del sistema y manipularla.
Como ya hemos visto, instanciemos una variable con la clausula new y como argumento le proporcionamos la
fecha que nos interese:

<script>

var ahora = new Date(); // fecha actual

var dia2 = new

var anoNuevo = new Date("January 1, 2026 00:00:00");//fecha en texto,no recomanable
var diaAnoNuevo = new Date("2026,1,1"); // fecha en numeros: AAAA, MM, DD

var iAnoNuevo =
</script>

Date (3600*24*1000); // fecha en milisegundos desde 01/01/1970

new Date("2026,1,1,0,0,0");//fecha en numeros: AAAA,MM, DD, HH,MM, SS

En el caso de las fechas,

podemos dividir casi todos los métodos en tres categorias principales:

e Getters: Que nos devuelvan informacidn concreta.

e Setters: Que nos permiten ajustar informacién concreta.

e Otros: Que nos

Método (argumentos)
getDate()

getDay()
getFullYear()
getHours()
getMilliseconds()
getMinutes()
getMonth()
getSeconds()
getTime()

getTimezoneOffset()

getUTCDate()
getUTCDay()
getUTCFullYear()
getUTCHours()
getUTCMilliseconds()
getUTCMinutes()
getUTCMonth()
getUTCSeconds()
getYear()

now()

parse()

setDate()
setFullYear()

facilitaran enormemente el trabajo para convertir la informacién.

Descripcion
Devuelve el dia del mes (del 1 al 31)

Devuelve el dia de la semana (de 0 a 6)
Devuelve el afio

Devuelve la hora (de 0 a 23)

Devuelve los milisegundos (de 0 a 999)
Devuelve los minutos (de 0 a 59)
Devuelve el mes (de 0 a 11)

Devuelve los segundos (de 0 a 59)

Devuelve el nimero de milisegundos desde medianoche del 1 de enero
de 1970y una fecha especificada

Devuelve la diferencia horaria entre la hora UTC y la hora local, en
minutos

Devuelve el dia del mes, segun la hora universal (del 1 al 31)

Devuelve el dia de la semana, segun la hora universal (de 0 a 6)
Devuelve el afio, segun el tiempo universal

Devuelve la hora, segln la hora universal (de 0 a 23)

Devuelve los milisegundos, segun el tiempo universal (de 0 a 999)
Devuelve los minutos, segun el tiempo universal (de 0 a 59)
Devuelve el mes, segln el tiempo universal (de 0 a 11)

Devuelve los segundos, segun el tiempo universal (de 0 a 59)
Depreciado. Utiliza el método getFullYear() en cambio

Devuelve el numero de milisegundos desde medianoche del 1 de enero
de 1970

Analiza una cadena de fechas y devuelve el nimero de milisegundos
desde el 1 de enero de 1970

Establece el dia del mes de un objeto de fecha

Establece el afio de un objeto de fecha

s‘ DE EDUCACION, FORMACION PROFESIONAL) -q DETRABAJO
| Y DEPORTES Y ECONOMIA SOCIAL
= 2 a2 3 SERVE PUBLIC
D'OCUPACIO ESTATAL

EV‘ W Generalitat :ﬁ' MINISTERIO 2 35,33 MINISTERIO EE;I;;%E
Y de Catalu : e B

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,

Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

40

Servei d'Ocupacio
de Catalunya

setHours()

setMilliseconds()

setMinutes()

2= mat@roin

Establece la hora de un objeto de fecha
Establece los milisegundos de un objeto de fecha

Establece las actas de un objeto de fecha

setMonth() Establece el mes de un objeto de fecha

setSeconds() Establece los segundos de un objeto de fecha

setTime() Fija una fecha en un nimero especificado de milisegundos después o
antes del 1 de enero de 1970

setUTCDate() Fija el dia del mes de un objeto de fecha, segln el tiempo universal

setUTCFullYear() Establece el afio de un objeto de fecha, segun el tiempo universal

setUTCHours() Fija la hora de un objeto de fecha, segun el tiempo universal

setUTCMilliseconds()

setUTCMinutes()

Establece los milisegundos de un objeto de fecha, seglin el tiempo
universal
Establece los minutos de un objeto de fecha, segun la hora universal

setUTCMonth() Fija el mes de un objeto de fecha, segun el tiempo universal
setUTCSeconds() Fija los segundos de un objeto de fecha, segun el tiempo universal
setYear() Depreciado. Utiliza el método setFullYear() en cambio

toDateString()
toGMTString()
tolSOString()

toJSON()

toLocaleDateString()

toLocaleTimeString()

toLocaleString()

toString()

toTimeString()

Convierte la parte de fecha de un objeto Date en una cadena legible
Depreciado. Utiliza el método toUTCString() en cambio

Devuelve la fecha como cadena, utilizando el estandar ISO

Devuelve la fecha como cadena, formatada como fecha JSON

Devuelve la parte de fecha de un objeto Date como cadena, utilizando
convenciones locales

Devuelve la parte de tiempo de un objeto Date como cadena, utilizando
convenciones locales

Convierte un objeto Date en una cadena, utilizando convenciones de
localizacidn

Convierte un objeto Date en una cadena

Convierte la parte temporal de un objeto Date en una cadena

toUTCString() Convierte un objeto Date en una cadena, segun el tiempo universal

uTC() Devuelve el nimero de milisegundos en una fecha desde medianoche
del 1 de enero de 1970, segun la hora UTC

valueOf() Devuelve el valor primitivo de un objeto Date

En siguiente ejemplo se aplican el método toLocaleDateString() para quedarnos sélo con la fecha con un formato

estandar, o los métodos getDay(), getDate(), getMonth() y getFullYear() para recuperar cada una de las

informaciones de la fecha actual para darle el formato que queramos. Como estos métodos vuelven un ndmero,

utilizamos matrices con los nombres personalizados para convertir los nimeros a texto. Finalmente, utilizamos

los métodos getHours(), getMinutes() y getSeconds() para recuperar la informacién de la hora, con condiciones

ternarias para afadir un 0 inicial si el valor es inferior a 10:

<script>

const d =

console.log(d.toLocaleDateString())

new Date() ;

// 10/1/2026

const diasSemana =

'Viernes

', 'Sébado'];

['Domingo', 'Lunes',

'Martes', 'Miércoles', 'Jueves',

' Generalitat

SERVICIO PUBLICO
DE EMPLEO ESTATA!

SEPE

MINISTERIO
DETRABAJO
Y ECONOMIA SOCIAL

SERVEI PUBLIC
D'OCUPACIO ESTATAL

:ﬁ' MINISTERIO f% =
\ / S "Q DE EDUCACION, FORMACION PROFESIONAL Sha
W de Catalunya =0z === 2l

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

41

Servei d'Ocupacio
de Catalunya

2= mat@roin

const mesesAno = ['enero', 'febrero', 'marzo',
'julio', 'agosto', 'septiembre', 'octubre', 'noviembre',

'abril', 'mayo', 'Jjunio',
'diciembre'];

console.log(diasSemana [d.getDay()] + "
[d.getMonth()] + " del " + d.getFullYear());
// Sé&bado 10 de enero del 2026

" + d.getDate() + " de " + mesesAno

console.log(${ (d.getHours()<10)? "O"+d.getHours () d.getHours () }
${ (d.getMinutes ()<10)? "0"+d.getMinutes () d.getMinutes () }
${ (d.getSeconds ()<10)? "0"+d.getSeconds () d.getSeconds ()} ') ;

// 09 08 38
</script>

OBJECTES HOST

Son objetos que no forman parte del lenguaje, sino que les proporciona el entorno donde se ejecuta JavaScript;
en nuestro caso, el navegador y el mismo documento HTML.

BOM

El Browser Object Model es la forma que interpreta el JavaScript el navegador como un objeto: de esta manera
le puede aplicar propiedades y métodos. El objeto Window tiene una serie de propiedades como Console,
History, Location, Navigator o Screen, y a su vez estas propiedades tienen sus propios métodos:

Propiedades y métodos WINDOW Descripcion

window.addEventListener() Adjunta un gestor de eventos a una ventana

window.alert() o alert() Muestra una caja de alerta con un mensaje y un botdn de aceptacion
window.confirm() o confirm() Muestra un cuadro de didlogo con un mensaje, un botén de OK y un
botdn de Cancel

Muestra un cuadro de didlogo que pide al usuario la entrada de texto
Abre una nueva ventana del navegador o una nueva pestafia,
dependiendo de la configuracidén del navegador y de los valores de los
parametros

window.prompt() o prompt()
window.open()

setinterval()
clearInterval()
setTimeout()
clearTimeout()
window.innerHeight
window.innerWidth
window.outerHeight

window.outerWidth

window.scrolIBy()
window.scrollTo()
window.scrollX
window.scrollY
window.pageXOffset
window.pageYOffset
window.print()

A\ Generalitat

Llama una funcidn a intervalos especificos (en milisegundos).

Borra un temporizador establecido con el método setlinterval()

Llama una funcién después de un nimero de milisegundos

Borra un temporizador establecido con el método setTimeout()
Devuelve la altura del area de contenido de una ventana

Devuelve la anchura del drea de contenido de una ventana

Devuelve la altura exterior de la ventana del navegador, incluyendo
todos los elementos de la interfaz (como las barras de herramientas o
las barras de desplazamiento).

Devuelve la anchura exterior de la ventana del navegador, incluyendo
todos los elementos de la interfaz (como las barras de herramientas o
las barras de desplazamiento)

Desplaza el documento por el nimero especificado de pixeles

Desplaza el documento hasta las coordenadas especificadas

Devuelve los pixeles que un documento ha desplazado desde la esquina
superior izquierda de la ventana

Abre el cuadro de didlogo de impresion, que permite al usuario
seleccionar opciones de impresion preferidas

SERVICIO PUBLICO
DE EMPLEO ESTATA!

¥ MINISTERIO S Es ¥ MINISTERIO
S " DEEDUCACION, FORMACION PROFESIONAL ST 0 DETRABAIO SEPE
o Y DEPORTES 1 YECONOMIAsociAL =1 =
SERVEI PUBLIC

Y, de Catalunya

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,

D'OCUPACIO ESTATAL

Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

42

de Catalunya

window.localStorage o
localStorage
localStorage.setitem()
localStorage.getitem()
window.console o console
console.log()
console.table()
window.location o location
location.hash

location.host

location.hostname
location.href

location.origin

location.pathname
location.port
location.protocol
location.search

window.history o history
history.length
history.back()

history.forward()
history.go()
window.navigator o navigator

navigator.language
navigator.userAgent

window.screen o screen
screen.availHeight

screen.availWidth
screen.height

screen.width

Servei d'Ocupacio

2= mat@roin

El objeto localStorage almacena datos sin fecha de caducidad. Los datos
no se eliminan y estan disponibles para futuras sesiones.

Te permite desartar pares clave/valor en el navegador

Te permite recuperarel valor de una clave

Proporciona acceso a la consola de depuracién del navegador

Envia un mensaje a la consola

Muestra los datos tabulares como una tabla

Contiene informacidn sobre la URL actual

Establece o devuelve la parte de anclaje (#) de una URL

Establece o devuelve el nombre de anfitridn y el nUmero de puerto de
una URL

Establece o devuelve el nombre de host de una URL

Establece o devuelve toda la URL

Devuelve el protocolo, el nombre de anfitrion y el numero de puerto de
una URL
Establece o devuelve el nombre del camino de una URL

Establece o devuelve el numero de puerto de una URL
Establece o devuelve el protocolo de una URL
Establece o devuelve la parte de la cadena de consulta de una URL

Contiene las URL visitadas por el usuario (en la ventana del navegador).
Devuelve el nimero de URLs (paginas) a la lista de historial
Carga la URL anterior (pagina) en la lista de historial

Carga la siguiente URL (pagina) en la lista de historial
Carga una URL especifica (pagina) de la lista de historial
Contiene informacidn sobre el navegador

Devuelve el lenguaje del navegador

Devuelve la cabecera de usuario-agente enviada por el navegador al
servidor.

El objeto pantalla contiene informacion sobre la pantalla del visitante
Devuelve la altura de la pantalla (excluyendo la barra de tareas)

Devuelve la anchura de la pantalla (excepto la barra de tareas)
Devuelve la altura total de la pantalla

Devuelve la anchura total de la pantalla

<script>
var elBanner;

window.addEventListener ("load", function () {

elBanner = setInterval (function () {
alert(";Todavia estéds aqui?");
},5000) ;
1) 7
function cerrarBanner () {

clearInterval (elBanner) ;

}

SEPE

SERVEI PUBLIC

</script>
<p>
<button type="button" onclick="cerrarBanner ();">Parar banner</button>

</p>

DOM
AN Generalitat -, -,
\ S "Q DE EDUCACION, FORMACION PROFESIONAL ST DETRABAIO
gg 44 d e Catalunya 1 & Y DEPORTES 1 = Y ECONOMIA SOCIAL

D'OCUPACIO ESTATAL

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,

Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

43

Servei d'Ocupacio
de Catalunya

El Documento Object Model es la forma que interpreta el JavaScript el documento como un objeto: de esta
manera le puede aplicar propiedades y métodos. El DOM da una representacion de las etiquetas HTML del
documento como un grupo de nodos y objetos estructurados que tienen propiedades y métodos. Esencialmente,
conecta las paginas web a scripts o lenguajes de programacion.

En el siguiente esquema, cada rectangulo representa un nodo DOM vy las flechas indican las relaciones entre
nodos. Dentro de cada nodo, se ha incluido su tipo y su contenido.

Documento: nodo raiz del cual
D 0 M derivan todos los demas nodos

I_ del arbol.

Document of Object Model

Elemento: representa cada una
S de las etiquetas HTML. Se trata
—— del dnico nodo que puede
| contener atributos y el Unico del

Element: .
gue pueden derivar otros nodos.

Attributo: se define un nodo de

| este tipo para representar cada
uno de los atributos de las
etiquetas HTML, es decir, uno por
I— — cada par atributo="valor".

Texto: nodo que contiene el texto
cerrado por una etiqueta HTML.

Las funciones que proporciona DOM para acceder a un nodo a través de sus nodos padre consisten en acceder
al nodo a raiz de la pagina y luego a sus nodos hijos y a los nodos hijos de estos hijos y asi sucesivamente hasta
el ultimo nodo de la rama terminada por el nodo buscado. Sin embargo, cuando se quiere acceder a un nodo
especifico, es mucho mas rapido acceder directamente a este nodo y no llegar hasta él descendiendo a través de
todos sus nodos padre.

Por este motivo, no se presentaran las funciones necesarias para el acceso jeradrquico de nodos y se muestran
solamente las propiedades y métodos del objeto document que permiten acceder de manera directa a los nodos:

Propiedad Descripcion

cookie Devuelve todos los pares de galletas nombre/valor del documento

forms Devuelve una coleccion de todos <form> los elementos del documento

images Devuelve una coleccidn de todos los elementos del documento

links Devuelve una coleccion de todos <a> <area> los y elementos del
documento que tienen un atributo href

title Establece o devuelve el titulo del documento

URL Devuelve la URL completa del documento HTML

Método (argumentos) Descripcion

2= mat@roin

AT\ Generalitat
Y, de Catalunya

v ¥ MINISTERIO
"Q DE EDUCACION, FORMACION PROFESIONAL
o Y DEPORTES

B\}

SERVICIO PUBLICO
DE EMPLEO ESTATAL

MINISTERIO armr
DETRABAJO S EPE
YECONOMIAsociAL =1 =

SERVE] PUBLIC
D'OCUPACIO ESTATAL

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

44

Servei d'Ocupacio
de Catalunya

2= mat@roin

addEventListener() Adjunta un gestor de eventos al documento

getElementByld() Devuelve el elemento que tiene el atributo ID con el valor especificado

getElementsByClassName() Devuelve un HTMLCollection que contiene todos los elementos con el
nombre de clase especificado

getElementsByName() Devuelve una Nodelist activa que contiene todos los elementos con el
nombre especificado

getElementsByTagName() Devuelve un HTMLCollection que contiene todos los elementos con el
nombre de etiqueta especificado

hasFocus() Devuelve un valor booleano que indica si el documento tiene foco

querySelector() Devuelve el primer elemento que coincide con un selector CSS
especificado del documento

querySelectorAli() Devuelve una Nodelist estatica que contiene todos los elementos que
coinciden con un(s) selector(s) CSS especificado(s) del documento

removeEventListener() Elimina un gestor de eventos del documento (que se ha adjuntado con
el método addEventListener())

write() Escribe expresiones HTML o cddigo JavaScript en un documento

writeln() Igual que write(), pero aflade un caracter de nueva linea después de

cada instruccion

<script>
window.addEventListener ("load", function () {
const elBoton = document.getElementById("btnBoton") ;
elBoton.addEventListener ("click", function () {
alert ("Has pulsado el botén");
});
}) i
</script>
<p>
<button type="button" id="btnBoton">Botén</button>
</p>

Una vez tenemos seleccionado uno o un conjunto de nodos, podemos aplicar nuevas propiedades y métodos:

Propiedad Descripcion

length Obtiene el nimero de nodos seleccionados

classList Devuelve el(s) nombre(s) de clase de un elemento

clientHeight Devuelve la altura de un elemento, incluyendo el relleno

clientLeft Devuelve la anchura del borde izquierdo de un elemento

clientTop Devuelve la anchura del borde superior de un elemento

clientWidth Devuelve la anchura de un elemento, incluyendo el relleno

innerHTML Establece o devuelve el contenido de un elemento

innerText Establece o devuelve el contenido textual de un nodo y sus
descendientes

scrollHeight Devuelve toda la altura de un elemento, incluyendo el relleno

scrollLeft Establece o devuelve el nimero de pixeles en los que el contenido de un
elemento esta desplazado horizontalmente

scrollTop Establece o devuelve el nimero de pixeles en los que el contenido de un
elemento se desplaza verticalmente

scrollWidth Devuelve toda la anchura de un elemento, incluyendo el relleno

style Establece o devuelve el valor del atributo de estilo de un elemento

SERVICIO PUBLICO

‘. “ General Itat 8 % MINISTERIO % MINISTERIO DEGEOEAL
Wl de Catalunya s e oremremes 53 5% w0en SEPE
) ’ y s 4 a ~—vamic
Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

B\Y we

45

Servei d'Ocupacio
de Catalunya

2= mat@roin

textContent Establece o devuelve el contenido textual de un nodo y sus
descendientes

(nombreAtributo) Cualquier atributo de una etiqueta HTML se convierte en una propiedad

Método (argumentos) Descripcion

addEventListener() Adjunta un gestor de eventos a un elemento

checkValidity() Comprueba si el elemento tiene restricciones y si las cumple. Si el
elemento no cumple sus restricciones, devuelve falso.

hasAttribute() Devuelve cierto si un elemento tiene un atributo dado

hasAttributes() Devuelve cierto si un elemento tiene cualquier atributo

hasChildNodes() Devuelve cierto si un elemento tiene nodos hijos

scrollintoView() Desplaza el elemento al area visible de la ventana del navegador

setAttribute() Establece o cambia el valor de un atributo

setAttributeNode() Establece o cambia un nodo de atributo

reset() Restablece un formulario a su estado inicial

submit() Envia los datos de un formulario

preventDefault() Cancela el evento si es cancelable, es decir, que la accidn por defecto
que pertenece al evento no se producira

stopPropagation() Impide que se llame la propagacion del mismo acontecimiento

Un caso especial es la propiedad classList que hace referencia a las clases CSS que se aplican a una etiqueta:
como esto implica manipular la estética del nodo, tenemos disponibles mas métodos y propiedades especiales
s6lo para manipular los nombres de las clases:

Propiedades y métodos de classList Descripcion

add() Afiade uno o mas nombres a la lista

contains() Regresa verdadero si la lista contiene una clase

forEach() Ejecuta una funcidn de llamada para cada nombre de la lista
length Devuelve el nimero de nombres a la lista

remove() Elimina uno o mas nombres de la lista

replace() Sustituye un nombre en la lista

toggle() Cambia entre fichas en la lista

value Devuelve la lista de nombres como una cadena

values() Devuelve un iterador con los valores de la lista

En el siguiente ejemplo afadimos un gestor de evento al objeto window para esperar a que se cargue el
documento y que tengamos disponibles los botones. A continuacion se seleccionan todos por su nombre de clase
CSS, y a cada uno afladimos un gestor de evento para detectar cuando se pegan para mostrar una alerta
personalizada con el contenido del botdn:

SERVICIO PUBLICO
DE EMPLEO ESTATA!

V W G e n e ra I itat 8 % MINISTERIO &

% MINISTERIO _—
=5 DE EDUCACION, FORMACION PROFESIONAL T DETRABAIO S EPE
YEcOoNOMiAsociaL =l =

WY, de Catalunya =Wz == -

SERVEI PUBLIC

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

46

Servei d'Ocupacio
de Catalunya

2= mat@roin

<script>
window.addEventListener ("load", function () {
const elBoton = document.querySelectorAll(".elBoton");
elBoton. forEach (function (b) {
b.addEventListener ("click", function () {
alert ("Has pulsado el botdén " + b.textContent) ;
1)
1) ;
1)
</script>
<p>
<button type="button" class="elBoton">Botdén 1</button>
<button type="button" class="elBoton">Botdén 2</button>
<button type="button" class="elBoton">Botdén 3</button>
</p>

Con el método addEventlListener() ya no hay que anadir los eventos como atributos de las etiquetas
HTML, por lo tanto el cédigo queda mucho mds limpio.

Este método necesita como primer argumento el acontecimiento a escuchar: el nombre del acontecimiento es
el mismo que el del atributo HTML pero sin el "on" inicial:

Nombre del evento como argumento Definicion

blur Cuando un elemento de formulario pierde el foco
change Cuando el valor de un campo de formulario es modificado
click Cuando se hace clic con el botén del ratén
contextmenu Cuando se hace clic con el botén alternativo del ratéon
dblclick Cuando se hace doble clic en un objeto

focus Cuando un elemento de formulario adquiere el foco
input Cuando se esta modificando un campo de formulario
keydown Cuando se presiona una tecla

keypress Cuando se presiona una tecla

keyup Cuando se deja de presionar una tecla

load Cuando una pagina o imagen acaba de cargarse
mousedown Cuando se pite el botén del ratén

mousemove Cuando se mueve el ratén

mouseout Cuando el cursor del ratdn sale del elemento
mouseover Cuando el cursor del ratdn se pone encima

mouseup Cuando se deja ir el botdn del ratén

reset Cuando se pite el botdn de reset de un formulario
resize Cuando se modifica el tamafio de una ventana

select Cuando se selecciona texto de un campo de formulario
submit Cuando se pite el boton sumido de un formulario
wheel Cuando la rueda del raton sube o baja sobre un elemento

En el siguiente ejemplo se utilizan diferentes métodos para controlar el envio de un formulario validandolo con
JavaScript y no por el navegador:

SERVICIO PUBLICO
DE EMPLEO ESTATAL

m G litat

| ‘ enera I a v & MINISTERIO Sl % MINISTERIO ormr
; =% DE EDUCACION, FORMACION PROFESIONAL ? ""'q DETRABAJO SEPE

Y, de Catalunya & Yowos SEWS vkt =

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,

»\}
L

Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

47

Servei d'Ocupacio
de Catalunya

2= mat@roin

<script>
window.addEventListener ("load", function () {
const forms = document.querySelectorAll ('.para-validar');
forms. forEach (form => {
form.addEventListener ("submit", event => ({
event .preventDefault () ;
event .stopPropagation () ;
if (form.checkValidity()) {
form.submit () ;
} else {
alert ("Verifica los campos del formulario");

</script>
<form class="para-validar" novalidate>
<p>
<label for="idNom">Nombre</label>
<input type="text" id="idNombre" required name="elNombre">
</p>
<p>
<button type="submit">Enviar</button>
</p>
</form>

A partir de ahora, con la manipulacion del DOM y acceso a los diferentes nodos del documento, podemos
abandonar los métodos del objeto window como alert (), confirm() y prompt () para emplear
elementos propios del lenguaje HTML como parrafos, divisores, botones y entradas de formulario para
interactuar con los visitantes y mejorar la experiencia de usuario.

En el siguiente ejemplo, se emplea un formulario para que el visitante introduzca los datos, se manipula la
propiedad "value" y "checked" para recoger la informacidn y se muestra la respuesta de forma asincrona en un
contenedor:

<script>
window.addEventListener ("load", function () {
const formAcceso = document.getElementById('£formAcceso') ;
const mensajeAcceso = document.getElementById ('mensajeAcceso');

formAcceso.addEventListener ("submit", event => {
event.preventDefault () ;
event.stopPropagation () ;
mensajeAcceso.textContent = "";

let edad = document.getElementById('edad') .value;

let edadNum = parselnt (edad) ;

let politicalegal = document.getElementById('politicalegal') .checked;
console.log (edad, edadNum, politicalegal) ;

if (politicalegal && !isNaN (edadNum) && edadNum >= 18) {
formAcceso.submit () ;
} else if (isNaN (edadNum)) {
mensajeAcceso.textContent = "Hay que introducir la edad.";
} else if (edadNum < 18) {

mensajeAcceso. textContent "No se permite el acceso a menores de edad.";

} else if (!politicalLegal) {

mensajeAcceso.textContent = " Hay que aceptar la politica de privacidad.";
} else {

mensajeAcceso.textContent = "Llena los campos del formulario.";

A\ Generalitat ' =
! ! OF EMPLE ESTATAL
i ¥ MINISTERIO MINISTERIO
"% DE EDUCACION, FORMACION PROFESIONAL DE TRABAJO S E P E
Y ECONOMIA SOCIAL o

ékv A d e C at al u nya Y DEPORTES SERVE PUBLIC

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

B\ we
s B

48

Servei d'Ocupacio
de Catalunya

2= mat@roin

});

});
</script>
<form id="formAcceso">
<p>
<label for="edad">Introduce tu edad:</label>
<input type="text" id="edad" name="edad">
</p>
<p>
<input type="checkbox" id="politicalegal" name="politicalegal">
<label for="politicalLegal">Acepto la politica de privacitat</label>
</p>
<p>
<button type="submit">Validar</button>
</p>
</form>
<p id="mensajeAcceso"></p>

OBJETOS LITERALES

Un objeto literal es un conjunto de claves y valores. Cada clave es un nombre, y cada valor puede ser lo que
quieras: un numero, un texto, otro objeto, una funcion... Es como decir: "Tengo algo que tiene estas
caracteristicas y puede hacer estas acciones".

Un objeto en JavaScript es un contenedor flexible que agrupa datos y comportamientos bajo un
mismo nombre.

EL OBJETO es una entidad de la vidal real que se traslada al paradigma informatico: tienen ATRIBUTOS como
caracteristicas que lo pueden definir y tienen METODOS que son acciones que pueden realizar los objetos sobre
sus propios atributos o sobre los de otros objetos. Por ejemplo: el objeto coche tiene propiedades: "color",

"marca", "modelo", "motor"; también tiene funciones: arrancar() o frenar().

Una forma répida de crear un objeto es instanciar una variable con las llaves “{}” y afiadir dentro las claves de
datos que necesitamos con los valores correspondientes empleando el operador dos puntos “:” y separando las
claves con coma “,”. Los métodos se definen como una clave mas pero con una funcién anénima como valor.
Una vez declarado y instanciado el objeto, podemos hacerle referencia por el nombre y utilizar las propiedades

” o,

y los métodos con el operador del punto ”.

<script>
const coche = {
color: 'negro',
marca:'js',
model: 'object',
motor: 'hibrido',

arrancar: function () {console.log("arrancar");},
frenar: function () {console.log("frenar");}

}

coche.marca = "JavaScript";

console.log(coche.marca) ;
coche.arrancar () ;
coche. frenar () ;

</script>

SERVICIO PUBLICO

Los valores que podemos almacenar pueden ser de cualquier de los tipos vistos con las variables.
v ¥ MINISTERIO

_ .
V W General Itat " MINISTERIO A

A / ';’ DE EDUCACION, FORMACION PROFESIONAL E DETRABAJO S E P E
LY de Catal u nya a YOS e e

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

B \}

49

Servei d'Ocupac
de Catalunya

i0

2= mat@roin

Las CLASES son plantillas que definen qué atributos y métodos deben tener todos los objetos creados a partir de

esta clase; no asigna valores, sélo los tipos de los mismos. Las clases también pueden tener herencias: de esta

forma las clases principales son Superclases, y las subordinadas son inferiores y se llaman Subclases.

Utilizamos class para declarar un nuevo objeto (los objetos empiezan siempre con mayuscula y en singular), y

extends si esta es una subclase de una clase previamente declarada.

La instanciacion es la accion de crear un objeto a partir de una clase dentro de una variable y lo hacemos con

new. En el siguiente ejemplo simularemos una fabrica de bolleria y pasteles:

<script>
class Brioixeria {

// Atributos con los valores por defecto para definir el tipo:
T

nom = 8
sabor = '7,;
pes = 0;
color = '7,;
racions = 0;

}

class Pastis extends Brioixeria {

// Atributos con los valores por defecto para definir el tipo:
// Como este objeto depende de una superclase,
espelmes 0;

}

const articlel

new Brioixeria();

articlel.nom = 'Croissant';
articlel.sabor = 'mantequilla';
articlel.pes = 0.15;
articlel.color = 'beige';
articlel.racions = 1;
document.writeln (" <dl>

<dt>Nombre:</dt><dd>S${articlel.nom}</dd>

<dt>Sabor:</dt><dd>${articlel.sabor}</dd>

<dt>Peso:</dt><dd>${articlel.pes} Kg</dd>

<dt>Color:</dt><dd>${articlel.color}</dd>

<dt>Raciones</dt><dd>S${articlel.racions}</dd>
</d1>");

const article?2 = new Pastis();

article2.nom = 'Pastel de manzana';
article2.sabor = 'manzana y caramelo';
article2.pes = 1.5;

article2.color = 'marrédn';
article2.racions = 6;

article2.espelmes = 12;

document .writeln (<dl>

<dt>Nombre:</dt><dd>${article2.nom}</dd>
<dt>Sabor:</dt><dd>${article2.sabor}</dd>
<dt>Peso:</dt><dd>${article2.pes} Kg</dd>
<dt>Color:</dt><dd>${article2.color}</dd>
<dt>Raciones</dt><dd>${article2.racions}</dd>
<dt>Velas</dt><dd>${article2.espelmes}</dd>
</d1>");
</script>

los atributos originales no hay que llamarlos

En este ejemplo tenemos una Superclase Brioixeria que tiene una serie de atributos asignados. Y de esta se crea

una Subclase Pastis que hereda sus atributos, pero se pueden afiadir nuevos atributos para personalizar el nuevo

o objeto.
F W G e n e ra I itat " "" gIENE'sDEé:SZION FORMACION PROFESIONAL A ': MIN‘STENOQ
Wl de Catalunya Rl 2

Y ECONOMIA SOCIAL

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,

Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

50

Servei d'Ocupacio
de Catalunya

Si el objeto tiene muchas propiedades asignadas, instanciar cada una de ellas individualmente con el operador
del punto es muy pesado. La opcidn para agilizar la asignacion inicial de valores es crear un constructor o funcion
constructora: dentro de la clase, utilizamos constructor como nombre de método genérico que permite afiadir
valores a los atributos en el mismo momento de la instanciacion. Utilizamos this. en las propiedades para centrar
el ambito -scope -dentro del objeto y asi llamamos sélo a sus atributos, pero si el objeto es una Subclase y hereda
las propietas de su Superclase, utilizamos super. si hacemos referencia a elementos heredados:

<script>
class Brioixeria {
nom = '';
sabor = '';
pes = 0;
color = '';
racions = 0;

constructor (nom, sabor, pes, color, racions) {
this.nom = nom;
this.sabor = sabor;
this.pes = pes;
this.color = color;
this.racions = racions;

}

}

class Pastis extends Brioixeria {
espelmes = 0;

constructor (nom, sabor, pes, color, racions, espelmes) {
super (nom, sabor, pes, color, racions);
this.espelmes = espelmes;
}
}

const articlel = new Brioixeria('Croissant', 'mantequilla', 0.15, 'beige', 1);

document.writeln (" <dl>
<dt>Nombre:</dt><dd>${articlel.nom}</dd>
<dt>Sabor:</dt><dd>${articlel.sabor}</dd>
<dt>Peso:</dt><dd>${articlel.pes} Kg</dd>
<dt>Color:</dt><dd>${articlel.color}</dd>
<dt>Raciones</dt><dd>${articlel.racions}</dd>
</dl>);

const article?2 = new Pastis('Pastel de manzana', ' manzana y caramelo', 1.5,
'marrdén', 6, 12);

document.writeln (" <dl>
<dt>Nombre:</dt><dd>${article2.nom}</dd>
<dt>Sabor:</dt><dd>${article2.sabor}</dd>
<dt>Peso:</dt><dd>S${article2.pes} Kg</dd>
<dt>Color:</dt><dd>${article2.color}</dd>
<dt>Raciones</dt><dd>S${article2.racions}</dd>
<dt>Velas</dt><dd>${article2.espelmes}</dd>

</d1>");

Ademas del método por defecto de constructor, podemos afiadir métodos o acciones personalizadas a nuestros
objetos declarando funciones dentro del propio objeto y modificandolo en las Subclases:

<script>
class Brioixeria {
nom ='';
sabor = '";

SERVICIO PUBLICO

2= mat@roin

A\ Generalitat
\ de Catalunya

¥ MINISTERIO jud “ MINISTERIO
"Q DE EDUCACION, FORMACION PROFESIONAL S ‘& DETRABAJO
o Y DEPORTES a2 A ECONOMIA SOCIAL

DE EMPLEO ESTATAL

SEPE

SERVE] PUBLIC
D'OCUPACIO ESTATAL

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,

Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

51

Servei d'Ocupacio
de Catalunya

2= mat@roin

pes = 0;
color = '';
racions = 0;

constructor (nom, sabor, pes, color, racions) {
this.nom = nom;
this.sabor = sabor;
this.pes = pes;
this.color = color;
this.racions = racions;

}

aTexto () {
return “Soy un ${this.nom} de sabor de ${this.sabor} con un peso de
${this.pes} Kg, de color ${this.color} para ${this.racions} raciones’;
}
}

class Pastis extends Brioixeria ({
espelmes = 0;

constructor (nom, sabor, pes, color, racions, espelmes) {
super (nom, sabor, pes, color, racions);
this.espelmes = espelmes;

}

aTexto () {
return “Soy un ${this.nom} de sabor de ${this.sabor} con un peso de
${this.pes} Kg, de color ${this.color} para ${this.racions} raciones con
S{this.espelmes} velas;
}
}

const articlel = new Brioixeria('Croissant', 'mantequilla', 0.15, 'beige', 1);
document.writeln("<p>" + articlel.aTexto() + "</p>");
const article?2 = new Pastis('Pastel de manzana', ' manzana y caramelo', 1.5,

'marrdén', 6, 12);
document.writeln("<p>" + article2.aTexto() + "</p>");
</script>

Aunque las propiedades se pueden recuperar y volver a instanciarse en cualquier momento porque JavaScript es
un lenguaje que da mucha flexibilidad, en otros lenguajes orientados a objetos, las propiedades se definen como
privadas y no se pueden utilizar tan libremente desde fuera de la propia definicién del objeto, de ahi que se
definan métodos getters y setters para poder manipularlas:

GETTERS

Los Getters o micrométodos son métodos para poder leer los valores de los atributos, necesarios en otros
lenguajes orientados a objetos porque son privados y no se pueden consultar desde fuera del objeto. Como el
resto de métodos, son heredables y sélo hay que definirlos una vez en la Superclase con el nombre que
queramos. En nuestro ejemplo:

getNom () |
return this.nom;

}
getSabor () {
return this.sabor;

}

SERVICIO PUBLICO

getPes () |
OF EMPLEO ESTATAL
¥ MINISTERIO

m G litat

| ‘ EErIEErEi I Ei s MINISTERIO ormr
\ | ‘@ DE EDUCACION, FORMACION PROFESIONAL DETRABAJO SEPE
WV de Catalunya =Bz === e =

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

/.
B Y s
s w

52

Servei d'Ocupacio
de Catalunya

2= mat@roin

return this.pes;
}
getColor () {
return this.color;
}
getRacions () {
return this.racions;

}

Y en la Subclase:

getEspelmes () {
return this.espelmes;

}

SETTERS

Los Setters o micrométodos son métodos para poder modificar los valores de los atributos, necesarios en otros

lenguajes orientados a objetos porque son privados y no se pueden modificar desde fuera del objeto. Como el

resto de métodos, son heredables y sélo hay que definirlos una vez en la Superclase con el nombre que

queramos. En nuestro ejemplo:

setNom (v) {
this.nom = v;

}

setSabor (v) {
this.sabor

'

}

setPes (v) {
this.pes = v;

}

setColor(v) {
this.color

'

}

setRacions (v) {
this.racions = v;

Y en la Subclase:

setEspelmes (v) {
this.espelmes = v;

}

La incorporaciéon de estos micrométodos haria modificar los otros métodos para incorporarlos. En nuestro

ejemplo, modificariamos el método para muestra la informacién en la Subclase para leer los atributos. Al ser

atributos de la Superclase, utilizo super y los getters para leer la informacidn; sélo se usa el this para los atributos

propios:

aTexto () {
return = Soy un pastel con el nombre ${super.getNom()} de sabor de
S{super.getSabor ()} con un peso de ${super.getPes ()} Kg, de color
${super.getColor ()} para ${super.getRacions ()} raciones con ${this.espelmes}
velas ' ;

}

Ahora, todo junto, el ejemplo queda:

FVN W G e n e ra I itat ' "" g'ENE'sDEé:SZION FORMACION PROFESIONAL
\ de Catalunya : |

“ MINISTERIO
‘& DETRABAJO
A ECONOMIA SOCIAL

By e

Y DEPORTES
&

SERVICIO PUBLICO
DE EMPLEO ESTATAL

SEPE

SERVE] PUBLIC
D'OCUPACIO ESTATAL

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,

Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

53

Servei d'Ocupacio
de Catalunya

2= mat@roin

<script>
class Brioixeria {

nom = '';

sabor = '';

pes

color = 5

racions

(nom, sabor,
nom;
sabor;
pes;

constructor
this.nom
this.sabor
this.pes

pes,

color,

racions)

{

this.

color

this.racions

getNom () {
return this.

}

getSabor () {
return this.

}

getPes () |
return this

}

getColor () {
return this.

}

getRacions
return

0 |
this.

}

setNom (v) {
this.nom

}

setSabor (v) {
this.sabor

}

setPes (v) {
this.pes

}
setColor(v) {
this.color

}
setRacions (v) {
this.racions

}

aTexto () {
return " Soy
S{this.pes

}

class Pastis extends
espelmes 0;

constructor
super (nom,
this.espelme

}

getEspelmes () {

(nom,

color;
racions;

nom;

sabor;

.pes;

color;

racions;

A%

= v;

un ${this.nom} de sabor de ${this
} Kg, de color ${this.color} para

Brioixeria {

sabor,
sabor,
S

pes, color, racions,
pes, color, racions);
espelmes;

espelmes) |

.sabor} con un peso de
S{this.racions} raciones';

1M Generalitat

\ de Catalunya

¥ MINISTERIO
= DE EDUCACION, FORMACION PROFESIONAL
Y DEPORTES

SERVICIO PUBLICO
DE EMPLEO ESTATAL

SEPE

SERVE] PUBLIC
D'OCUPACIO ESTATAL

id % MINISTERIO
S ‘& DETRABAJO
a Ay ECONOMIA SOCIAL

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacid Estatal (SEPE)

54

Servei d'Ocupacio
de Catalunya

SOC

2= mat@roin

return this.espelmes;

}

}

new Brioixeria(
'mantequilla’,

const articlel

'Croissant’', 1

0.15, 'beige',

) ;

document.writeln("<p>" + articlel.aTexto() + "</p>");

new Pastis(

const article2

setEspelmes (v) {
this.espelmes = v;
}
aTexto () {
return = Soy un pastel con el nombre ${super.getNom()} de sabor de
${super.getSabor ()} con un peso de ${super.getPes()} Kg, de color
S{super.getColor ()} para ${super.getRacions ()} raciones

con ${this.espelmes} velas ;

'Pastel de manzana', ' manzana y caramelo', 1.5, 'marrdédn', 6, 12
)i
document.writeln("<p>" + article2.aTexto() + "</p>");
</script>
A Generalitat L
\ DE EMPLEO ESTATAL
MINISTERIO MINISTERIO
DE EDUCACION, FORMACION PROFESIONAL DE TRABAJO SEPE
Y DEPORTES Y ECONOMIA SOCIAL ~ ~Z2=f "=
SERVEI PUBLIC
D'OCUPACIO ESTATAL

\ de Catalunya

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,

Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

55

Servei d'Ocupacio
de Catalunya

2= mat@roin

JQUERY

jQuery es una libreria de JavaScript creada para simplificar tareas habituales en el desarrollo web. Nacié con el
objetivo de hacer el cddigo mas corto, mas legible y mas compatible entre navegadores en una época en la que
cada navegador interpretaba JavaScript de manera diferente. Su filosofia se resume en el eslogan "Write less, do
more" —Escribe menos, haz maés-.

Con jQuery puedes seleccionar elementos del DOM con una sintaxis muy compacta, manipular contenido HTML,
manipular clases y estilos CSS, gestionar eventos, crear animaciones y hacer peticiones AJAX sin tener que
preocuparte por los detalles técnicos de cada navegador. Su funcidn principal, $(), actia como una puerta de
entrada rapida para acceder y modificar elementos de la pagina.

Aungue hoy en dia JavaScript moderno (ES6+) y la APl del DOM han mejorado mucho y han reducido la necesidad
de jQuery, todavia se encuentra en muchos proyectos existentes y es Util para mantener o modernizar
aplicaciones antiguas. También sigue siendo una herramienta sencilla para quien empieza y quiere manipular el
DOM de manera intuitiva.

En el capitulo dedicado al DOM, hemos visto algunos métodos y propiedades (no todos) de JavaScript para
manipularlo, y hemos constatado que hay una mezcla de propiedades, métodos y métodos de propiedades.
jQuery simplifica la sintaxis definiendo todo como métodos y variando sélo los argumentos de cada uno.

Ademas, gracias al amplio catdlogo de plugins o extensiones desarrolladas con esta libreria, es muy facil
implementar nuevas funcionalidades o conectarlas entre ellas sin que estudiar su sintaxis o cémo hacerlas
compatibles entre ellas.

jQuery no sustituye al JavaScript: lo complementa para facilitar la manipulaciéon de DOM con una
sintaxis compacta basada en métodos que resumen largas expresiones.

INSTALACION

Al ser una libreria como Bootstrap o FontAwesome, no es necesario instalar ningln software especial: solo hay
que enlazar con el archivo base que nos interese, disponibles en https://iquery.com/download/

e Archivo minificado con todas las funcionalidades: https://code.jquery.com/jquery-3.7.1.min.js

e Archivo sourcemap -fichero que sirven para relacionar el codigo minificado con el cédigo original legible
y que se pueda leer con claridad el cédigo en las herramientas de depuraciéon del navegador-
complementario al minificado: https://code.jquery.com/jquery-3.7.1.min.map

e Archivo sin minificar —no recomendado en produccién por su peso- para el desarrollo:
https://code.jquery.com/jquery-3.7.1.js

e Archivo minificado simplificado —slim- sin efectos visuales ni ajax: https://code.jquery.com/jquery-

3.7.1.slim.min.js
e Archivo sourcemap de la version simplificada: https://code.jquery.com/jquery-3.7.1.slim.min.map

e Archivo sin minificar simplificado: https://code.jquery.com/jquery-3.7.1.slim.js

Este archivo normalmente lo descargaremos y lo guardaremos en la carpeta del proyecto, con el resto de
recursos. También tenemos la posibilidad de utilizar un CDN (content delivery network) o red de entrega de
contenidos donde hay copias disponibles de los archivos.

‘ ! DX VPO BTATL
ol v & MINISTERIO Sl % MINISTERIO

1

o
ired i =
o 4 DE EDUCACION, FORMACION PROFESIONAL o "q DETRABAJO S EPE

/] | Y DEPORTES
Wl de Catalunya =Us: SO oo D

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

56

https://jquery.com/download/
https://code.jquery.com/jquery-3.7.1.min.js
https://code.jquery.com/jquery-3.7.1.min.map
https://code.jquery.com/jquery-3.7.1.js
https://code.jquery.com/jquery-3.7.1.slim.min.js
https://code.jquery.com/jquery-3.7.1.slim.min.js
https://code.jquery.com/jquery-3.7.1.slim.min.map
https://code.jquery.com/jquery-3.7.1.slim.js

Servei d'Ocupacio
de Catalunya

2= mat@roin

Una vez descargado o con el enlace CDN que nos interese, lo vincularemos con una etiqueta <script> al
<head> de nuestro documento, aunque normalmente se pone al final del <body>, con el resto de scripts, para
no enlentecer la carga del documento:

§<script src="jquery-3.7.1.min.Jjs"></script>

Es importante que enlacemos a la libreria jQuery antes del resto de scripts que utilicen su sintaxis

para evitar errores de lectura.

INICIALIZACION

Si jQuery estd pensado para manipular el DOM, antes de empezar a utilizarlo debemos asegurarnos de que todo
el documento esté completamente cargado, por lo tanto, usaremos una expresién similar al
window.addEventListener ("load", function () {}); para esperar a ejecutar el cddigo al que los
nodos estén disponibles:

<script src="jquery-3.7.l.min.js"></script>
<script>
$ (document) . ready (function () {

})
</script>

Aunque hay una version mas comoda y rapida:

<script src="jquery-3.7.1l.min.js"></script>
<script>
$ (function () {

})
</script>

A partir de ahora, todas nuestras sentencias irdn dentro de las llaves de esta funcion anénima que
se invocard una vez el documento esté cargado.

SELECTORES
A partir de ahora, cada vez que implementamos una nueva sentencia, la estructura sera clara: selector.método();
Para hacer el selector necesitamos la expresidn propia del jQuery $ ("selector"), donde el selector puede

ser cualquiera de los posibles selectores que nos da el CSS. Esta expresion es similar al:
document.querySelectorAll ("selector");

Aparte de simplificar, jQuery también hard que cualquier método que apliguemos al selector se aplique a todos
los elementos, es decir, el mismo jQuery hara el bucle forEach () por nosotros:

— D

<script src="jquery-3.7.l1l.min.js"></script>
<script>
S (function () {
$('.oculto') .hide() ;
1)
</script>

SERVICIO PUBLICO
DF EMPLED ESTATAL
v ¥ MINISTERIO
"Q DE EDUCACION, FORMACION PROFESIONAL

AN Generalitat . Py e SIS
ék, A d e C atal unya 2 Y DEPORTES Y ECONOMIA SOCIAL -

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

57

Servei d'Ocupacio
de Catalunya

2= mat@roin

METODOS

El listado de métodos que muestra la documentacion de jQuery en https://api.jquery.com/ es muy amplio, por

eso recomiendo otra webapp que he desarrollado como guia visual, donde los métodos aparecen organizados
por tematica: https://onaweb.cat/jquery/

Al pulsar cada uno de los métodos, se abre una ventana con la documentacién original en inglés, donde no sélo
se explican los argumentos necesarios, sino también hay ejemplos de uso.

Cabe mencionar que el JavaScript tiene muchas propiedades que pueden ser de lectura o escritura si estan a la
derecha o a la izquierda del operador de asignacién. En jQuery también estan definidos como métodos, pero
estos seran de lectura —getters- si sélo tienen un argumento, o de escritura —setters- si tienen dos argumentos.

Si alguno de los argumentos es de tipo funcion, como los handler de los métodos de eventos, sera una funcion
andnima donde podremos afiadir el cddigo a ejecutar en el caso de que el método se ejecute. Dentro de estas
funciones andnimas utilizaremos la clausula this para hacer referencia al objeto con el que se estd interactuando
en ese momento, asi que el uso de la funcién anénima o funcién de flecha podria dar errores en la interpretacién
del this.

Otra opcidén que tiene el JavaScript y también el jQuery es la opcidn de concatenar diferentes métodos con el
punto: $ ("selector") .métodol () .método2 () .método3() ...

Algunos de estos métodos tienen la cldusula jQuery o $ en lugar de un selector porque no es necesario aplicar
a un nodo en concreto: se pueden emplear como una funcién.

En el siguiente ejemplo hay tres botones con la misma clase CSS pero diferentes textos dentro, y un contenedor
identificado vacio. A continuacién esta el enlace a la liberia jQuery y su inicializacién, donde hay un selector para
los botones por su clase y un método de evento con dos argumentos: el evento "click" y la funcién anénima con
dos sentencias:

<p>
<button type="button" class="btnBoton">Botdén 1</button>
<button type="button" class="btnBoton">Botdén 2</button>
<button type="button" class="btnBoton">Botdén 3</button>

</p>

<div id="salida"></div>

<script src="jquery-3.7.l1l.min.js"></script>

<script>
S (function () {

S('.btnBoton') .on('click', function () {
let textoBoton = $(this).text();
S('#salida') .text (textoBoton)

}) i

) ;
</script>

En la primera sentencia se declara la variable local "textoBoton" y se instancia con el selector $ (this) que
equivale al botdon exacto sobre el que se ha pulsado con el método text () que equivale a la propiedad
innerText o textContent; al notener ninglin argumento, este método funciona como lectura —getter-.

SERVICIO PUBLICO
DE EMPLEO ESTATAL

m G litat

| ‘ enera I a v & MINISTERIO Sl % MINISTERIO ormr
; =% DE EDUCACION, FORMACION PROFESIONAL ? ""'q DETRABAJO SEPE

Y, de Catalunya & Yowos SEWS vkt =

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

»\}
L

58

https://api.jquery.com/
https://onaweb.cat/jquery/

Servei d'Ocupacio
de Catalunya

2= mat@roin

En la siguiente sentencia volvemos a empezar con un selector, en este caso el contenedor con el identificador, y
volvemos a aplicar el método text () que, en esta ocasidn, si tiene un argumento, por tanto, funciona como
escritura —setter- y muestra el contenido de la variable "textoBoton".

SELECTORES
En esta categoria tenemos un resumen de las diferentes formas que tenemos para seleccionar nodos del DOM,
la mayoria heredados del lenguaje CSS.

ATRIBUTOS / CSS

En esta categoria tenemos los métodos para manipular (leer o escribir) los atributos de las etiquetas HTML y las
propiedades CSS, asi como las clases CSS que se aplican. También se incluyen métodos para manipular las
dimensiones, la posicion en la ventana y los atributos data- de las etiquetas HTML.

Este atributo "data" merece una subcategoria aparte porque es una forma muy habitual de almacenar
informacion propia para esta etiqueta (como una variable local) para luego recuperarla con JavaScript y, en
nuestro caso, con jQuery.

Siguiendo el ejemplo inicial del capitulo, se han afadido atributos data-info a los botones para poder
personalizar el texto a mostrar. Por lo tanto, cada vez que pulsamos un botén debemos recuperar la informacion
de ese mismo botdn, y lo hacemos con el método data ('info') donde "info" es el argumento para
especificar cudl de todos los atributos data- que puede tener una etiqueta queremos seleccionar. Como no hay
un segundo argumento de valor, significa que es de lectura —getter-:

<p>
<button type="button" class="btnBoton" data-info="Informacién 1">Botdén 1</button>
<button type="button" class="btnBoton" data-info="Informacidén 2">Botdén 2</button>
<button type="button" class="btnBoton" data-info="Informacién 3">Botdén 3</button>

</p>

<div id="salida"></div>

<script src=" jquery-3.7.1.min.js "></script>

<script>
S (function () {
S('.btnBoton') .on('click', function () {
let textoBoton = $(this).data('info');
S('"#salida') .text (textoBoton)
F):
}) s
</script>

IMIANIPULACION
Son métodos para manipular el contenido o lo que lo rodea, duplicar o incluso eliminar el nodo seleccionado. En
el ejemplo anterior se ve el uso del método text () para manipular el texto contenido en un nodo.

ATRAVESANDO

Este conjunto de métodos nos permite movernos por la estructura de nodos del documento. Siempre
necesitamos empezar desde un nodo origen, el seleccionado, y a partir de estos nos podemos mover a nodos
inferiores —los hijos-, superiores —los padres- o los que estan al mismo nivel —los hermanos-.

EVENTOS

Este conjunto de métodos nos permiten detectar las interacciones del usuario con el ratén, el teclado o

SERVICIO PUBLICO
DE EMPLEO ESTATAL

relacionados con los formularios.
v & MINISTERIO Sl % MINISTERIO
" DE EDUCACION, FORMACION PROFESIONAL) l "q DETRABAJO S E P E

AT Generalitat
Y, de Catalunya s Yoo AUIDE YECONGHASSSREY = s

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

»\}
L

59

Servei d'Ocupacio
de Catalunya

ry =
2= mat@roin
En el siguiente ejemplo se modifica un ejemplo anterior para utilizar la sintaxis jQuery: en este caso el selector
del formulario (o formularios) ahora es mas sencillo, no es necesario utilizar ningtin bucle pero si queremos seguir
utilizando métodos originales del JavaScript -.checkvValidity () y .submit ()-y que el jQuery no se
confunda, afiadimos el método .get (0) para indicar que en el array de posibilidades del jQuery —para jQuery

todo conjunto de elementos es un array, aunque sea de un Unico elemento-, nos quedamos con el primer nodo
—el formulario que estamos manipulando-:

<form class="para-validar" novalidate>
<p>
<label for="idNombre">Nombre</label>
<input type="text" id="idNombre" required name="elNombre">
</p>
<p>
<button type="submit">Enviar</button>
</p>
</form>
<script src=" jquery-3.7.1.min.js "></script>
<script>
S (function () {
$('.para-validar') .on("submit", function (event) {
event.preventDefault () ;
event.stopPropagation () ;

if ($(this).get(0).checkvalidity()) {
$ (this) .get(0) .submit () ;
} else {

alert ("Verifica los campos del formulario");
}
1)
});
</script>

EFECTOS

Aqui tenemos métodos para efectos visuales; no son efectos muy complejos, pero para hacer efectos sencillos
para mejorar la experiencia de usuario pueden ser un buen punto de partida.

Siguiendo el ejemplo anterior, no emplearemos un alert () sino un mensaje en pantalla ya definido en el
codigo HTML:

<form class="para-validar" novalidate>
<p>

<label for="idNombre">Nombre</label>

<input type="text" id="idNombre" required name="elNombre">

</p>

<p>

<button type="submit">Enviar</button>

</p>
</form>
<div class="aviso">Verifica los campos del formulario</div>
<script src=" jquery-3.7.1.min.js "></script>
<script>

S (function () {

$('.aviso') .hide() ;

S('.para-validar') .on("submit", function (event) {
event.preventDefault () ;
event.stopPropagation () ;
if ($(this).get(0).checkvValidity()) {

S(this).get(0).submit();
} else {

A\ Generalitat
\ de Catalunya

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

SERVICIO PUBLICO
DE EMPLEO ESTATAL

MINISTERIO
DE TRABAJO SEPE
Y ECONOMIA SOCIAL o

SERVE] PUBLIC
D'OCUPACIO ESTATAL

¥ MINISTERIO
"% DE EDUCACION, FORMACION PROFESIONAL
Y DEPORTES

b/
B Y s
s w

60

Servei d'Ocupacio
de Catalunya

2= mat@roin

$ (this) .next('.aviso') .slideDown () ;

1)
});
</script>

En este ejemplo, al cargar el documento ocultamos el nodo con el mensaje, y cuando se valida y da un error de
validacion, desde el formulario nos movemos al siguiente nodo (el del mensaje) para desplegarlo.

AJAX

AJAX es una técnica de JavaScript que permite comunicarse con el servidor sin recargar toda la pagina. El nombre
proviene de Asynchronous JavaScript and XML, aunque hoy en dia no es necesario utilizar XML: también
funciona con JSON, texto o cualquier otro formato.

La asincronia es la capacidad de ejecutar tareas sin bloquear la aplicaciéon, permitiendo que otras
operaciones continien mientras una accidon lenta se resuelve en segundo plano.

La idea central es sencilla: la pagina envia una peticidn al servidor "en segundo plano", recibe la respuesta y
actualiza sdlo la parte necesaria del documento. Esto hace que las aplicaciones web sean mds rapidas, fluidas e
interactivas, porque el usuario no ve ningln corte ni recarga completa.

Con AJAX puedes, por ejemplo, cargar datos nuevos, enviar formularios, actualizar listas o validar informacion
sin salir de la pdgina. Inicialmente se usaba el objeto XMLHt tpRequest, pero hoy es muy habitual utilizar la
APl fetch, que es mas moderna y clara.

En resumen, AJAX es el mecanismo que permite que muchas webs funcionen de manera dindmica y reactiva,
haciendo que la comunicacidn con el servidor sea transparente para el usuario.

jQuery incluye su implementaciéon con el método ajax () y el resto de métodos auxiliares para facilitar la
gestion de datos y respuestas.

<div id="galeria"></div>
<script src=" jquery-3.7.1.min.Jjs "></script>
<script>

S (function () {

$.getJSON("https://picsum.photos/v2/1ist"™, function(data) {

let items = [];
$.each(data, function(key, val) {
items.push("<div><img src="${val.download url}" alt="foto
S{val.id}" title="${val.author}"></div>");
1)
$("#galeria") .append(items.join('"));

b
P
</script>

En el anterior ejemplo se ve en uso el método $.getJSON () para conectar con un servidor que da un
documento .json con una lista de 30 imagenes; una vez establecida la conexidn, leido el archivo y descodificado
en formato array, lo podemos recorrer para almacenar en el array local "items" los nuevos nodos de HTML con
imagenes. Los valores de los atributos de las imagenes se establecen a partir de la informacion del JSON
(JavaScript Object Notation). Una vez recorrido, se muestra el contenido dentro del contenedor con el
identificador "galeria".

‘ ! DX VPO BTATL
ol v & MINISTERIO jud % MINISTERIO

ired i =
o 4 DE EDUCACION, FORMACION PROFESIONAL o "q DETRABAJO S EPE

k, A d e C at al u nya 2 4 Y DEPORTES a A ECONOJMIA SOCIAL =

D'OCUPACIO ESTATAL

Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

61

Servei d'Ocupacio
de Catalunya

2= mat@roin

NUCLEAR

Aqui tenemos un "cajon desastre" donde tenemos el resto de métodos que no pertenecen al resto de categorias.
Muchos métodos son ayudas y auxiliares, como el método $.each () —que hemos visto en el ejemplo anterior-
para hacer un bucle a los elementos de un array o el método .get () —que ya hemos visto en ejemplos
anteriores- para seleccionar el nodo nativo de JavaScript de un array de nodos del jQuery.

PLUGINS

Un plugin de JavaScript es un pequeiio moédulo de cddigo pensado para afiadir funcionalidades concretas a una
pagina o aplicacidn sin tener que reescribirlas desde cero. Actia como una extensidn reutilizable: encapsula una
caracteristica (por ejemplo, un carrusel, un selector de fechas o un sistema de pestafias) y permite integrarla
facilmente en diferentes proyectos mediante una API sencilla.

Pero depende del autor cdmo estan desarrollados y la sintaxis utilizada, y eso implica que hay que leer muy bien
la documentacion y estudiar su funcionamiento para entender cémo personalizarlo y hacerlo funcionar con el
resto del cddigo del proyecto.

En el ecosistema de jQuery, por ejemplo, los plugins han sido una manera muy popular de compartir soluciones
y ampliar las capacidades de la libreria y, ademas, al estar escritos todos bajo las mismas premisas, son faciles de
entender y de implementar.

Cada vez que queramos afiadir un nuevo plugin, habra que seguir las siguientes reglas de oro:

1. Encontrar la pagina web de documentacion del plugin: a veces el autor del plugin ha creado un sitio
web especifico para documentar el plugin, pero normalmente los encontraremos en la plataforma de
github.com.

2. Descargar los archivos del plugin: en la misma web del autor encontraremos el enlace de descarga o, si
ya estamos en GitHub, podemos descargarnos el lote entero.

3. Localizar los archivos necesarios para copiarlos en nuestro proyecto: leyendo la documentacion
veremos qué .css Y .js necesitaremos para hacer funcionar el plugin. Estos archivos seran los necesarios
gue copiemos en la carpeta del proyecto. Normalmente, los encontramos en la carpeta /dist/.

4. Enlazar los archivos en el codigo HTML: es importante que el enlace a los archivos .js se hagan después
del enlace a la libreria de jQuery, pero antes de nuestro documento .js donde afiadimos nuestro cédigo.
Es importante aclarar que no trabajaremos en los archivos del plugin de la misma forma que no
trabajamos en el archivo del jQuery.

5. Crear la estructura HTML: los plugins tienen una aplicacidn practica sobre un contenido de nuestro
documento y debemos crearlo para ver sus resultados.

6. Inicializar el plugin: los plugins escritos por jQuery estan definidos como nuevos métodos, por lo tanto,
hay que leer la documentacidén para ver qué nombre tienen y ver qué argumentos u opciones de
configuracion tienen.

OWLCAROUSEL
Para mostrar cémo podemos emplear un plugin, explicaremos el plugin de OwlCarousel para jQuery, una libreria
para poder hacer pases de diapositivas o carruseles dinamicos.

1. Pagina web de documentacién: https://owlcarousel2.github.io/OwlCarousel2/

2. Descargar los archivos del plugin: https://github.com/OwlCarousel2/OwlCarousel2/archive/2.3.4.zip

SERVICIO PUBLICO

r. W .
| ‘ General Itat 8 % MINISTERIO : MINISTERIO Sl
= DE EDUCACION, FORMACION PROFESIONAL ¥ fe)
Wl de Catalunya @: == oo SEPE
Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacié Estatal (SEPE)

62

https://owlcarousel2.github.io/OwlCarousel2/
https://github.com/OwlCarousel2/OwlCarousel2/archive/2.3.4.zip

Servei d'Ocupacio
de Catalunya

2= mat@roin

3. Localizar los archivos necesarios: al descomprimir encontramos una carpeta /dist/ con los archivos
owl.carousel.js y owl.carousel.min.js. Como el segundo es la versién minificada del
primero, mas ligera, es la que despegaremos en nuestro proyecto. Ademads, seguin la documentacion,
de la carpeta /dist/assets/ necesitaremos el archivo owl .carousel.min.css por los estilos
basicos y owl.theme.default.min.css o owl.theme.green.min.css para afadir los
controladores predeterminados.

4. Enlazar los archivos: en nuestro ejemplo, quedaria algo parecido a:

<!DOCTYPE html>

<html lang="es">

<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Carrusel con OwlCarousel</title>
<link rel="stylesheet" href="OwlCarousel2-2.3.4/dist/assets/owl.carousel.min.css">
<link rel="stylesheet" href="OwlCarousel2-2.3.4/dist/assets/owl.theme.default.min.css">
<style>

body { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;}

</style>

</head>

<body>
<hl>Carrusel amb OwlCarousel</hl>

<script src="jquery-3.7.1.min.js"></script>
<script src="OwlCarousel2-2.3.4/dist/owl.carousel.min.js"></script>
<script src="funcions.js"></script>

</body>

</html>

5. Crear la estructura HTML: creamos un contenedor con una lista de imagenes para mostrarlas en
carrusel:

<!DOCTYPE html>
<html lang="es">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Carrusel con OwlCarousel</title>
<link rel="stylesheet" href="OwlCarousel2-2.3.4/dist/assets/owl.carousel.min.css">
<link rel="stylesheet" href="OwlCarousel2-2.3.4/dist/assets/owl.theme.default.min.css">
<style>
body { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;}
</style>
</head>
<body>
<hl>Carrusel amb OwlCarousel</hl>
<div id="galeria">

</div>
<script src="jquery-3.7.1l.min.js"></script>
<script src="OwlCarousel2-2.3.4/dist/owl.carousel.min.js"></script>
<script src="funcions.]js"></script>
</body>
</html>

F‘. W H 1 SERVICIO PUBLICO
M Generalitat -, o =
' | = DE EDUCACION, FORMACION PROFESIONAL DETRABAJO
1l de Catalunya e 5 ibituoon SEPE
Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacid Estatal (SEPE)

By e
s B

63

Servei d'Ocupacio
de Catalunya

2= mat@roin

6. Inicializar el plugin: en esta libreria debemos hacer dos cosas; primero, afadir las clases css al
contenedor de galeria:

<div id="galeria" class="owl-carousel owl-theme">

</div>

Segundo, hacer el selector del contenedor y aplicar el método del plugin en nuestro archivo funcions.js:

S (function () {
$ ('#galeria') .owlCarousel ({
loop:true,
margin:10,
nav:true,
responsive: {
0:{
items:1
b
600: {
items:3
bo
1000: {
items:5

}

});

});

A partir de ahora, depende del autor de qué argumentos podemos afadir al método para configurar su
funcionamiento. Todas estas opciones estaran disponibles en la documentacidn de la web.

V‘. W H 2 SERVICIO PUBLICO
1 General Itat q MINISTERIO 7 MINETERIG DE EMPLEO ESTATAL
' | = DE EDUCACION, FORMACION PROFESIONAL DE TRABAJO
WUl de Catalunya i WS "ibictican SEPE
Aquesta actuacid esta impulsada i subvencionada pel Servei Public d’Ocupacié de Catalunya (SOC) amb fons rebuts del Ministeri d’Educacio,
Formacié Professional i Esport i del Servei Public d’Ocupacid Estatal (SEPE)

B\
s B

64

