

JavaScript

i

jQuery

Omar del Río García

Aquesta actuació està impulsada i subvencionada pel Servei

Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del

Ministeri d’Educació, Formació Professional i Esport i del

Servei Públic d’Ocupació Estatal (SEPE)

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

3

CONTENIDO
Introducción .. 6

Tipologías de lenguajes de programación .. 6

Conceptualización de las bases del pensamiento computacional .. 6

JavaScript .. 8

Un poco de historia sobre JavaScript .. 8

Diferencias entre diferentes navegadores ... 9

Diferencias entre Java y JavaScript ... 9

Qué necesitas para trabajar con JavaScript .. 10

Diferentes versiones de JavaScript, los navegadores que las aceptan y sus avances. 10

Sintaxis básica ... 11

Comentarios .. 11

Formas de ejecutar scripts de JavaScript .. 12

Ejecución directa ... 12

Respuesta a un Evento .. 12

Incluir ficheros externos de JavaScript .. 13

Depuración del código .. 13

Variables.. 15

Declaración e instanciación .. 15

Ámbito de variables –scope- .. 16

Variables globales ... 16

Variables locales .. 17

Tipos de variables ... 17

Comandos de salida y entrada de valores .. 18

Alert... 18

Prompt .. 18

Confirm ... 19

Conversión del tipo de valores ... 19

Operadores ... 20

Texto ... 20

Números ... 20

Lógicos y de comparación ... 21

Prioridad de los operadores ... 22

Estructuras de Control .. 23

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

4

Condiciones .. 23

if .. 23

if ... else ... 24

else ... if ... 26

Ternario ... 26

switch .. 26

isNaN()... 27

Bucles .. 28

while .. 28

do ... while ... 28

for .. 29

for ... in i for ... of .. 29

Sentencias break y continue ... 29

Funciones .. 30

Declaración e invocación .. 30

Parámetros y argumentos .. 31

Funciones que devuelen un valor ... 31

Anidamiento ... 32

Fat arrow .. 33

Funciones Generales ... 33

Eventos .. 34

Objetos integrados del lenguaje ... 35

Texto ... 35

Número ... 37

Array ... 37

Fecha... 40

Objectes host .. 42

BOM .. 42

DOM.. 43

Objetos Literales ... 49

Getters .. 52

Setters ... 53

jQuery.. 56

Instalación ... 56

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

5

Inicialización ... 57

Selectores ... 57

Métodos ... 58

Selectores .. 59

Atributos / CSS .. 59

Manipulación .. 59

Atravesando .. 59

Eventos .. 59

Efectos ... 60

Ajax .. 61

Núclear .. 62

Plugins... 62

OwlCarousel .. 62

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

6

INTRODUCCIÓN

TIPOLOGÍAS DE LENGUAJES DE PROGRAMACIÓN

Un lenguaje de programación es un idioma artificial diseñado para expresar procesos que pueden ser

reproducidos por máquinas. Se utilizan para crear programas que controlan el comportamiento lógico de una

máquina y para expresar algoritmos con precisión.

Decimos lenguaje porque está formado por un conjunto de símbolos, reglas sintácticas y semánticas que definen

su estructura y significado de los elementos y expresiones.

Los lenguajes interpretados son aquellos que requieren un programa auxiliar o intérprete que traduce el

lenguaje a binario para que la máquina lo pueda procesar y ejecutar. Ejemplos: PHP, Phyton, JavaScript, etc.

Los lenguajes compilados necesitan un programa anexo llamado compilador que hace la transformación a un

lenguaje inteligible para la máquina y genera un archivo que se puede ejecutar sin la necesidad de ningún otro

programa intermediario; es lo que se llama archivo ejecutable. Ejemplos: C, C++, Java, etc.

Los lenguajes transpilados son aquellos que, antes de ejecutarse, se transforman en otro lenguaje de nivel

similar, habitualmente por motivos de compatibilidad o por aprovechar características avanzadas no disponibles

en todas las plataformas. En este proceso, un transpilador convierte el código fuente original en otro código

fuente equivalente pero más ampliamente soportado. Ejemplos: Haxe, Sass/SCSS, TypeScript, etc.

CONCEPTUALIZACIÓN DE LAS BASES DEL PENSAMIENTO COMPUTACIONAL

El pensamiento computacional se basa en pensar de la misma manera que lo haría un científico informático

cuando nos enfrentamos a un problema. En otras palabras, es un proceso que permite formular problemas de

manera que sus soluciones pueden ser representadas como secuencias de instrucciones y algoritmos.

Este tipo de pensamiento lo podemos definir como un proceso de reconocimiento de aspectos relacionados con

la informática en la que se aplican herramientas y técnicas para comprender, razonar y solucionar problemas

tanto naturales como artificiales. Estas características son la abstracción, el pensamiento algorítmico, la

descomposición y el reconocimiento de patrones.

Es probable que durante el proceso de resolución de estos problemas exista información irrelevante. La

abstracción es la característica de prescindir de la información irrelevante para que en la mesa esté sólo la

información necesaria para el cumplimiento del objetivo.

El pensamiento algorítmico es otra de las características del pensamiento

computacional: es necesario para comunicar e interpretar una serie de

instrucciones ordenadas que nos lleven a un resultado concreto y

predecible.

Es decir, el pensamiento algorítmico nos permite automatizar soluciones.

Un buen ejemplo de este pensamiento es la cocina: las recetas son

algoritmos en sí mismo. ¿Cómo se prepara un sándwich de mantequilla de

cacahuete y mermelada? Pensar y escribir los pasos necesarios, sin olvidar

ningún detalle, estructura el pensamiento de una forma computacional.

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

7

Otra característica del pensamiento computacional es la descomposición: al enfrentarse a un problema, éste

debe desarticularse para convertirlo en una práctica más sencilla.

Si el problema original es demasiado complejo para solucionarlo de golpe, hay que descomponerlo en diferentes

problemas menores cada vez más específicos y concretos hasta que sean solucionables.

Esta forma de plantear subproblemas cada vez más concretos a partir de un problema general se llama diseño

descendente.

Una vez desarticulado el problema principal, cada uno de ellos debe resolverse sobre la base de una metodología

similar que se haya utilizado con otros problemas ya resueltos.

Esta característica es el reconocimiento de patrones: saber generalizar un proceso de resolución con la finalidad

de que éste sirva para poder resolver otros problemas similares.

Cuando pensamos en los problemas, podemos reconocer similitudes entre ellos y que se pueden resolver de

manera similar. A esto se denomina coincidencia de patrones, y es algo que hacemos naturalmente todo el

tiempo en nuestra vida diaria.

Pensamiento computacional y programación no son sinónimos, pero comparten procesos similares: ambos son

un medio que sirve para descomponer y resolver problemas. Mientras que el pensamiento computacional es

aplicable a muchas disciplinas, la programación limita estos procesos exclusivamente en el ámbito de la

informática.

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

8

JAVASCRIPT

JavaScript es un lenguaje de programación utilizado para crear pequeños programas encargados de realizar

acciones dentro del ámbito de una página web. Con JavaScript podemos crear efectos especiales en las páginas

y definir interactividades con el usuario. El navegador del cliente es el encargado de interpretar las instrucciones

JavaScript y ejecutarlas para realizar estos efectos e interactividades, de manera que el mayor recurso, y quizás

el único, con el que cuenta este lenguaje es el propio navegador.

JavaScript es un lenguaje interpretado que se introduce en una página web H TML. Un lenguaje

interpretado quiere decir que a las instrucciones las analiza y procesa el navegador en el momento

que deben ser ejecutadas.

Entre las acciones típicas que se pueden realizar en JavaScript tenemos dos vertientes. Por un lado los efectos

especiales sobre páginas web, para crear contenidos dinámicos y elementos de la página que tengan

movimiento, cambian de color o cualquier otro dinamismo. Por otro, JavaScript nos permite ejecutar

instrucciones como respuesta a las acciones del usuario, de manera que podemos crear páginas interactivas con

programas como calculadoras, agendas, o tablas de cálculo.

JavaScript es un lenguaje con muchas posibilidades, permite la programación de pequeños scripts, pero también

de programas más grandes, orientados a objetos, con funciones, estructuras de datos complejos, etc. Toda esta

potencia de JavaScript se pone a disposición del programador, que se convierte en el verdadero propietario y

controlador de cada cosa que pasa en la página. Todo lo que veremos a continuación nos servirá de base para

adentrarnos más adelante en el desarrollo de páginas enriquecidas del lado del cliente.

JavaScript, al igual que ActionScript en Flash o Visual Basic Script, es una de las múltiples maneras que han surgido

para extender las capacidades del lenguaje HTML (lenguaje para el diseño de páginas de Internet). Al ser la más

sencilla, es de momento la más extendida. JavaScript no es un lenguaje de programación propiamente dicho

como C, C++, Delphi, etc. Es un lenguaje script u orientado a documento, como pueden ser los lenguajes de

macros que tienen muchos procesadores de texto y hojas de cálculo. No se puede desarrollar un programa con

JavaScript que se ejecute fuera de un navegador, aunque en este momento empieza a expandirse a otras áreas

como la programación en el servidor con NODE.JS.

UN POCO DE HISTORIA SOBRE JAVASCRIPT

Según va creciendo la web y sus diferentes usos se fueron complicando las páginas y las acciones que se querían

realizar a través de ellas. Al poco tiempo quedó reflejado que HTML no era suficiente para realizar todas las

acciones que se pueden llegar a necesitar en una página web. En otras palabras, HTML se había quedado corto

ya que sólo servía para presentar el texto en una página, definir su estilo y poco más.

Al complicar los sitios web, una de las primeras necesidades fue que las páginas respondieran a algunas acciones

del usuario, para desarrollar pequeñas funcionalidades más allá de los propios enlaces. El primer ayudante para

cubrir las necesidades que estaban surgiendo fue Java, que es un lenguaje de propósito general, pero que había

creado una manera de incrustar programas en páginas web. A través de la tecnología del Applets, se podía crear

pequeños programas que se ejecutaban en el navegador dentro de las propias páginas web, pero que tenían

posibilidades similares a los programas de propósito general. La programación de Applets fue un gran avance y

Netscape, entonces el navegador más popular, había roto la primera barrera del HTML al hacer posible la

programación dentro de las páginas web. No hay duda de que la aparición de los Applets supuso un gran avance

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

9

en la historia de la web, pero no ha sido una tecnología definitiva y muchas otras han seguido implementando el

camino que comenzó con ellos.

Netscape, después de hacer sus navegadores compatibles con los applets, comenzó a desarrollar un lenguaje de

programación al que llamó LiveScript que permitió crear pequeños programas en las páginas y que fuera mucho

más sencillo de utilizar que Java. De manera que el primer JavaScript se llama LiveScript, pero no duró mucho

este nombre, ya que antes de lanzar la primera versión del producto se forjó una alianza con Sun Microsystems,

creador de Java, para desarrollar en conjunto este nuevo lenguaje.

La alianza hizo que el JavaScript se diseñara como un hermano pequeño de Java, sólo útil dentro de las páginas

web y mucho más fácil de utilizar, de manera que cualquier persona, sin conocimientos de programación, pudiera

adentrarse en el lenguaje y utilizarlo a su aire. Además, para programar JavaScript solo es necesario un kit de

desarrollo, ni compilar los scripts, ni realizarlos en ficheros externos al código HTML, como pasaba con los

applets.

Netscape 2.0 fue el primer navegador que entendía JavaScript y su iniciativa fue seguida por otros clientes web

como Internet Explorer a partir de la versión 3.0. Sin embargo, la compañía Microsoft nombró a este lenguaje

como JScript y tenía ligeras diferencias respecto a JavaScript, algunas de las cuales perduran hasta el día de hoy.

DIFERENCIAS ENTRE DIFERENTES NAVEGADORES

Como hemos dicho el JavaScript de Netscape y el de Microsoft Internet Explorer tenía ligeras diferencias, pero

es que también el mismo lenguaje evolucionó a medida que los navegadores presentaban sus diferentes

versiones a medida que las páginas web se hacían más dinámicas y más exigentes las necesidades de

funcionalidades.

Las diferencias de funcionamiento de JavaScript ha marcado la historia del lenguaje y la manera en que los

desarrolladores se relacionan con él, debido a que estaban obligados a crear código que funcionara

correctamente en diferentes plataformas y diferentes versiones de las mismas. Hoy en día, siguen habiendo

muchas diferencias y para solucionarlo han surgido muchos productos como los Frameworks JavaScript, que

ayudan a realizar funcionalidades avanzadas de DHTML sin tener que preocupar en hacer versiones diferentes

de los scripts, para cada uno de los navegadores posibles de mercado.

DIFERENCIAS ENTRE JAVA Y JAVASCRIPT

Realmente JavaScript se llamó así porque Netscape, que estaba aliado a los creadores de Java en la época, quiso

aprovechar el conocimiento y la percepción que las personas tenían del popular lenguaje. Con todo, se creó un

producto que tenía ciertas similitudes, como la sintaxis del lenguaje o el nombre. Se hizo entender que era un

hermano pequeño y orientado específicamente para hacer cosas en las páginas web, pero también se hizo caer

a muchas personas en el error de pensar que son lo mismo. Queremos que quede claro que el JavaScript no tiene

nada que ver con Java, excepto en sus orígenes, como se ha podido leer hace unas líneas. Actualmente, son

productos totalmente diferentes y no guardan entre sí más relación que la sintaxis idéntica y poco más. Algunas

diferencias entre estos dos lenguajes son las siguientes: el Compilador. Para programar en Java necesitamos un

Kit de desarrollo y un compilador. Sin embargo, JavaScript no es un lenguaje que necesite que sus programas se

compilen, sino que estos se interpretan por parte del navegador cuando éste lee la página.

 Orientado a objetos: Java es un lenguaje de programación orientado a objetos. (Más tarde veremos

que quiere decir orientado a objetos, para quien no lo sepa todavía). JavaScript se ha actualizado para

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

10

que también sea orientado a objetos, pero podemos programar sin necesidad de crear clases, tal y como

se realiza en los lenguajes de programación estructurada como C o Pascal.

 Propósito: Java es mucho más potente que JavaScript, esto se debe a que Java es un lenguaje de

propósito general, con el que se pueden hacer aplicaciones de lo más variado, sin embargo, con

JavaScript solo podemos escribir programas para que se ejecuten en páginas web.

 Estructuras fuertes: Java es un lenguaje de programación fuertemente tipado, esto quiere decir que al

declarar una variable deberemos indicar su tipo y no podrá cambiar de un tipo a otro automáticamente.

Por su parte JavaScript no tiene esta característica, y podemos colocar en una variable la información

que deseamos, sin importar el tipo de la misma. Además, podremos cambiar el tipo de información de

una variable cuando queramos.

 Otras características: Java es mucho más complejo, aunque también más potente, robusto y seguro.

Tiene más funcionalidades que JavaScript y las diferencias que los separan son lo suficientemente

importantes como para distinguirlos fácilmente.

QUÉ NECESITAS PARA TRABAJAR CON JAVASCRIPT

Para programar en JavaScript necesitamos básicamente lo mismo que para desarrollar páginas web con HTML:

un entorno integrado de desarrollo o IDE (acrónimo en inglés de integrated development environment) o editor

de texto y un navegador compatible con JavaScript.

DIFERENTES VERSIONES DE JAVASCRIPT, LOS NAVEGADORES QUE LAS ACEPTAN Y SUS

AVANCES.

El lenguaje ha ido avanzando durante sus años de vida e incrementando sus capacidades. Al principio podía hacer

muchas cosas en la página web, pero tenía pocas instrucciones para crear efectos especiales.

Con el tiempo también el HTML ha avanzado y se han creado nuevas características como las capas, que permiten

tratar y maquetar los documentos de manera diferente. JavaScript ha avanzado también y para gestionar todas

estas nuevas características se han creado nuevas instrucciones y recursos.

Realmente cualquier navegador medianamente moderno tendrá ahora todas las funcionalidades de JavaScript

que necesitaremos. No obstante, puede ir bien conocer las primeras versiones de JavaScript que comentamos,

a modo de curiosidad.

 JavaScript1: nació con el Netscape 2.0 y soportaba gran cantidad de instrucciones y funciones, casi todas

las que existen ahora ya se introdujeron en el primer estándar.

 JavaScript1.1: es la versión de JavaScript que se diseñó con la llegada de los navegadores 3.0.

Implementaba poco más que su anterior versión, como el tratamiento de imágenes dinámicamente y la

creación de arrays.

 JavaScript1.2: la versión de los navegadores 4.0. Esta tiene como desventaja que es un poco diferente

en plataformas Microsoft y Netscape, ya que ambos navegadores crecieron de manera diferente y

estaban en plena lucha por el mercado.

 JavaScript1.3: versión que implementan los navegadores 5.0. En esta versión se han limado algunas

diferencias entre los dos navegadores.

 JavaScript 1.5: Versión que implementa Netscape 6.

 Por su parte, Microsoft también ha evolucionado hasta presentar su versión 5.5 de JScript (así llamamos

al JavaScript utilizado por los navegadores de Microsoft).

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

11

 ECMAScript: En 1997 los autores propusieron Javascript como estándar de la European Computer

Manufacturers Association ECMA, que a pesar de su nombre no es europeo, sino internacional, con la

sede en Ginebra.

 Para evitar estas incompatibilidades, el World Wide Web Consortium (W3C) diseñó el estándar

Document Object Model (DOM, o Modelo de Objetos del Documento en castellano), que incorpora el

Konqueror, las versiones 6 de Internet Explorer y Netscape Navigator, Opera versión 7, y Mozilla desde

su primera versión.

SINTAXIS BÁSICA

JavaScript es un lenguaje de programación y, tal y como hemos comentado antes, está formado por un conjunto

de símbolos, reglas sintácticas y semánticas que definen su estructura y significado de los elementos y

expresiones.

Para hacernos una idea, cuando redactamos un contenido, la frase u oración es el conjunto de palabras con

sentido completo, y normalmente las acabamos con un signo de puntuación. A esta estructura le decimos

sentencia en programación.

A su vez, las oraciones se componen de unidades gramaticales o sintagmas: sujeto, predicado, complemento

directo, complemento indirecto,... Dentro de una sentencia, a estas unidades le diremos expresiones.

En las frases, podemos tener sustantivos para hacer referencia a algún concepto. En la programación, tenemos

las variables que almacenan información.

En las oraciones tenemos verbos para expresar acciones. En la programación, tenemos comandos para dar las

órdenes.

En las frases tenemos conjunciones para poder unir palabras y sintagmas. En la programación tenemos los

operadores.

ORACIONES ..SENTENCIES

SINTAGMAS .. EXPRESIONES

SUSTANTIVOS .. VARIABLES

CONJUNCIONES .. OPERADORES

VERBOS ... COMANDOS

Cada vez que escribimos una instrucción hay que acabar con el carácter punto y coma. Es

importantísimo tener en cuenta que JavaScript es sensible a mayúsculas y minúsculas.

Aunque nos dejemos el punto y coma ";" al final de una sentencia, JavaScript si detecta un salto de línea al código

la finaliza implícitamente, aunque es una buena práctica finalizarlas explícitamente para mejorar el rendimiento

del navegador.

COMENTARIOS
Una parte fundamental de la programación es añadir comentarios que nos ayuden a componer cada parte del

código sin que el navegador los interprete. Para añadir comentarios tenemos la opción de añadir un comentario

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

12

de una sola línea // y cuando cambiamos de línea continuamos con la ejecución normal, o la opción de abrir un

comentario /* y no cerrarlo */ hasta más adelante:

// comentario de una línea

/*

Comentario

en varias

líneas de código

*/

FORMAS DE EJECUTAR SCRIPTS DE JAVASCRIPT

Hay dos maneras básicas de ejecutar scripts JavaScript en una página: al cargar la página o como respuesta a

acciones del usuario.

EJECUCIÓN DIRECTA
Es el método de ejecutar scripts más básico. En este caso se incluyen las instrucciones dentro de la etiqueta

<script>. Cuando el navegador lee la página y encuentra un script interpreta las líneas de código y las va

ejecutando una después de otra. Llamamos a este modo ejecución directa ya que cuando se lee la página se

ejecutan directamente los scripts.

<!DOCTYPE html>

<html lang="es">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Ejemplo JS</title>

 <style>

 body {font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;}

 </style>

</head>

<body>

 <h1>Ejemplo JS</h1>

 <script>

 document.write("¡Hola mundo!");

 </script>

</body>

</html>

En un mismo documento .html podemos tener tantas etiquetas <script> como hagan falta en cualquier parte

del documento, aunque lo más habitual es que estén en el <head> del documento.

RESPUESTA A UN EVENTO
Es la otra manera de ejecutar scripts, pero antes de verla tenemos que definir los eventos: son las acciones que

realiza el usuario. Los programas como JavaScript están preparados para atrapar determinadas acciones

realizadas, en este caso sobre la página, y realizar acciones como respuesta. De esta manera se pueden realizar

programas interactivos, ya que controlamos los movimientos del usuario y respondemos a ellos. Hay muchos

tipos de eventos diferentes, por ejemplo la pulsación de un botón, el movimiento del ratón o la selección de

texto de la página.

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

13

Las acciones que queremos hacer como respuesta a un evento deben indicarse dentro del mismo código HTML,

pero en este caso se indican en atributos HTML que se colocan dentro de la etiqueta que queremos que responda

a las acciones del usuario.

<button type="button" onclick="alert("¡Hola mundo!");">Saluda</button>

INCLUIR FICHEROS EXTERNOS DE JAVASCRIPT
Otra manera de incluir scripts en páginas web, implementada a partir de JavaScript 1.1, es incluir archivos

externos donde se pueden colocar muchas funciones que se utilicen en la página. Los ficheros suelen tener

extensión .js y se incluyen de esta manera:

<script src="archivo_externo.js" defer>

// estoy incluyendo el fichero " archivo_externo.js "

</script>

Esta es la forma más habitual y adecuada para mantener más organizado el código en nuestros

proyectos web.

En caso de vincular con un archivo .js, aparte del atributo src podemos añadir otros atributos para definir cuándo

se ejecutará este código:

 src: especifica la URL de un fichero de script externo.

 async: especifica que el script se descarga en paralelo a la página, y se ejecuta tan pronto como está

disponible (antes de que acabe la carga de la página).

 defer: especifica que el script se descarga en paralelo a la página, y se ejecuta después de que la página

haya terminado de cargarse.

Es importante aclarar que si utilizamos una etiqueta <script> para enlazar a otro archivo .js, no podemos

utilizar esta misma etiqueta para añadir código, porque será sobreescrito por el documento enlazado por el

atributo src.

DEPURACIÓN DEL CÓDIGO

Una forma habitual y rápida para depurar o mostrar resultados del código es emplear el objeto console con los

diferentes métodos, el más utilizado el .log(). Con la expresión console.log("mensaje") podemos lanzar mensajes

en la consola de depuración del propio navegador:

<script>

 console.log("Hola món!");

</script>

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

14

El objetivo de este manual no es mostrar todas las opciones posibles porque es un lenguaje vivo que cambia

continuamente, por lo tanto, recomiendo consultar blogs, foros y otras web de referencia como por ejemplo

http://www.w3schools.com/ o https://developer.mozilla.org/

De forma rápida, podemos listar los lenguajes web como una pirámide, donde cada uno de ellos complementa

el anterior:

 En la base tenemos el HTML, que nos permite estructurar los

contenidos por su representación.

 El CSS complementa al HTML para darle estilo y diseño, una mejor

apariencia a la estructura anterior.

 El JavaScript da dinamismo y efectos especiales al HTML y al CSS. La

suma de los tres lenguajes se denomina DHTML, y su principal

característica es que sólo hace falta un navegador para ver los

resultados.

 El PHP es un lenguaje de servidor, por lo tanto, permite aumentar la

seguridad y utilizar recursos de forma independiente en el navegador

del usuario.

 El MySQL es una tecnología de base de datos, que le permite al PHP

almacenar datos y contenidos para recuperarlos posteriormente; es la

base para desarrollar herramientas web como los gestores de

contenidos.

MySQL

PHP

JavaScript

CSS

HTML

http://www.w3schools.com/
https://developer.mozilla.org/

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

15

VARIABLES
Uno de los fundamentos de la programación es conocer el estado del sistema en todo momento y lo conseguimos

acumulando información en las variables. Podemos imaginarnos las variables como cajones dentro de la

memoria RAM del dispositivo, unos cajones que creamos según los necesitamos pero que se eliminarán

automáticamente cuando cambiemos de documento. Podemos crear tantos cajones -variables- como

necesitemos, pero para poder organizarnos y poder encontrar esta información hay que etiquetar estos cajones,

es decir, hay que nombrar las variables.

Las variables son contenedores de información para poder recuperarla o actualizarla en cualquier

momento a partir de su nombre.

En el momento de crear una variable hay que darle un nombre. Este nombre es completamente arbitrario, pero

hay que seguir unas normas básicas para asegurarnos el buen funcionamiento:

 No podemos utilizar palabras ya reservadas para el propio lenguaje JavaScript: las nombradas en este

manual.

 No podemos emplear espacios ni signos de puntuación: los nombres deben escribirse seguidos, sin

acentos ni otros caracteres especiales, empleando el alfabeto inglés; sólo podemos utilizar el guión bajo

"_" siguiendo la práctica snake_case o el símbolo de "$".

 Pueden contener números, pero nunca como primer carácter: el primer carácter siempre será una letra.

 Como buena práctica, se recomienda que tengan nombres autodefinitorios: esto implica que los

nombres sean compuestos por diferentes palabras.

 Como buena práctica, se recomienda utilizar la práctica del lowerCamelCase: escribir frases o palabras

compuestas eliminando los espacios y poniendo en mayúscula la primera letra de cada palabra, excepto

la primera palabra que se mantiene en minúscula.

Tipos de información Nombre de variable incorrecto Nombre de variable correcto

Nombre del cliente N-C nomClient

1º número 1 número numero1

Número 2 Número2 num_2

DECLARACIÓN E INSTANCIACIÓN

Al proceso de crear una variable asignándole un nombre único e irrepetible se le dice declaración. Es importante

tener en cuenta que JavaScript permite sobreescribir las variables si al declarar una variable le asignamos un

nombre ya existente, provocando errores posteriores en el tratamiento en la información.

La instanciación es el proceso de asignar un valor a la variable, y se hace con el operador "=". Si intentamos hacer

una instanciación sin declarar previamente la variable, JavaScript hará una declaración implícita y nos dejará

continuar sin errores, pero es una mala práctica porque se genera código muy confuso.

Para declarar una variable utilizamos uno de los comandos reservados para el propio lenguaje:

Tipo de comando Ejemplo de declaración e
instanciación

Cuando lo utilizaremos

var var nomClient = “Maria”; Es el método clásico y lo utilizaremos cuando
queremos una variable de ámbito global.

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

16

let let contador = 1; Es el método más moderno y lo utilizaremos
cuando queremos una variable de ámbito local.

const const nomClient = “Jordi”; Es el método más moderno para definir
constantes: variables que una vez instanciadas
no se volverán a cambiar.

Cuando utilizamos var o let podemos hacer la declaración en una sentencia y la instanciación en otra sentencia,

pero cuando empleamos const hay que hacer la declaración y la instanciación en la misma sentencia.

Podemos declarar múltiples variables simultáneamente con un único comando var o let si separamos los

diferentes nombres con comas ",".

<script>

 // Declaración de variables

 var nombreCliente, apellidoCliente;

 // Instanciación de variables

 nombreCliente = "Martín";

 apellidoCliente = "García";

 // Declaración e instanciación de constante

 const idioma = "es";

</script>

ÁMBITO DE VARIABLES –SCOPE-

En la definición de var y let hemos comentado que la principal diferencia es el ámbito de su uso –scope-: se le

llama ámbito de las variables en el lugar donde éstas están disponibles. En general, cuando declaramos una

variable hacemos que esté disponible en el lugar donde se ha declarado. Esto ocurre en todos los lenguajes de

programación y, como JavaScript se define dentro de una página web, las variables que declaramos en la página

estarán accesibles dentro de ella.

En JavaScript no podremos acceder a variables que hayan sido definidas en otra página. Por lo tanto, la propia

página donde se define es el ámbito más habitual de una variable y la llamaremos a este tipo de variables globales

en la página. Veremos también que se pueden hacer variables con ámbitos diferentes del global, es decir,

variables que declararemos y tendrán validez en lugares más acotados.

VARIABLES GLOBALES
Como hemos dicho, las variables globales son las que están declaradas en el ámbito más amplio posible, que en

JavaScript es una página web. Para declarar una variable global en la página simplemente lo haremos con la

palabra var.

<script>

 var variableGlobal;

</script>

Las variables globales son accesibles desde cualquier lugar de la página, es decir, desde el script donde se han

declarado y todos los demás scripts de la página, incluidos los manejadores de eventos, como el onclick, que ya

vimos que se podía incluir dentro de determinadas etiquetas HTML.

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

17

VARIABLES LOCALES
También podremos declarar variables en lugares más acotados, como por ejemplo una función: a estas variables

las llamaremos locales. Cuando se declaren variables locales sólo podremos acceder dentro del lugar donde se

ha declarado, es decir, si la habíamos declarado en una función sólo podremos acceder cuando estemos en esta

función.

Las variables pueden ser locales a una función, pero también pueden ser locales en otros ámbitos, como por

ejemplo un bucle. En general, son ámbitos locales cualquier lugar acotado por llaves. Estos elementos se tratan

más adelante en este manual.

TIPOS DE VARIABLES

JavaScript no es un lenguaje fuertemente tipado, y esto quiere decir que las variables no tienen un tipo definido

en su declaración, sino que se definen según el tipo de valor que le asignamos en la instanciación. Así, según el

valor que instanciemos a una variable, tendremos los siguientes tipos:

Tipo de variable Ejemplo Explicación

string var nombreCliente =

"María";

Cadena de texto. Los valores van entre comillas dobles “ "
“ o sencillas “ ' “.

number var registro = 1.5; Números. Los valores sólo pueden ser numéricos; el
separador decimal es el punto ".".

boolean var estado = true; Los valores boleanos son los valores reservados true o
false.

undefined var edad; Es el valor predeterminado de las variables declaradas pero
ni instanciadas.

null var apellidoCliente

= null;

Es un tipo de valor que es “sin valor”; se puede utilizar para
dejar una variable vacía o vaciar de valor una variable ya
instanciada previamente.

function var miFuncion =

function(){};

Una de las formas de declarar funciones es como una
variable. Las funciones se explican más adelante.

object var persona = {} Los objetos son la forma de almacenar información de
forma más estructurada y compleja. Los objetos se
explican más adelante.

Definir correctamente el tipo de las variables nos permite utilizar los operadores de la forma que más nos

interese, por lo tanto hay que controlar el tipo de las variables.

Hay que insistir en que el tipo de una variable se establece en la instanciación, por lo tanto, si una variable se

vuelve a instanciar con un tipo de valor diferente, la variable cambia también de tipo. Para saber en cada

momento el tipo de una variable podemos emplear el operador typeof:

<script>

 var laMevaVariable;

 console.log(laMevaVariable, typeof laMevaVariable); // undefined undefined

 laMevaVariable = "Jordi";

 console.log(laMevaVariable, typeof laMevaVariable); // Jordi string

 laMevaVariable = 2026;

 console.log(laMevaVariable, typeof laMevaVariable); // 2026 number

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

18

 laMevaVariable = true;

 console.log(laMevaVariable, typeof laMevaVariable); // true boolean

 laMevaVariable = null;

 console.log(laMevaVariable, typeof laMevaVariable); // null object

 laMevaVariable = {};

 console.log(laMevaVariable, typeof laMevaVariable); // Object {} object

 </script>

COMANDOS DE SALIDA Y ENTRADA DE VALORES

Una vez tenemos valores almacenados en las variables, sólo hay que nombrar su nombre para hacer referencia

a su contenido. Pero si queremos ver su valor en pantalla, hay que utilizar alguno de los comandos del lenguaje.

Ya hemos visto console.log(), pero tenemos otros para poder mostrar directamente en pantalla:

ALERT
Con el comando alert() podemos mostrar mensajes cortos en una pequeña ventana del propio navegador;

sólo hay que poner el mensaje tipo texto o el nombre de la variable entre los paréntesis:

<script>

 const mensaje = "Hola món!";

 alert(mensaje);

</script>

PROMPT
Con el comando prompt() podemos pedir información en una pequeña ventana del propio navegador para

que el visitante llene con su información; sólo hay que poner nuestra pregunta tipo texto y utilizar este prompt

para instanciar una variable:

<script>

 const nomVisitant = prompt("Digues el teu nom");

 alert(nomVisitant);

</script>

El valor que devuelve el prompt es siempre un tipo string.

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

19

CONFIRM
Con el comando confirm() podemos mover información en una pequeña ventana del propio navegador para

que el visitante la acepte (si pulsa el botón Aceptar) o la rechace (si pulsa el botón Cancelar); solo hay que poner

nuestra pregunta tipo texto y utilizar este confirm para instanciar una variable:

<script>

 const aceptacion = confirm("Acceptes la política de privacitat?");

 alert(aceptacion);

</script>

El valor que devuelve el confirm es siempre un tipo Boolean (true o false) .

CONVERSIÓN DEL TIPO DE VALORES

Si queremos convertir un valor tipo a otro, podemos emplear funciones generales del JavaScript que necesitan

que le pongamos el valor original entre paréntesis y nos devuelve el mismo valor pero como un tipo diferente:

Función Ejemplo Explicación

Boolean() var x = "1"; // string

x = Boolean(x);

// Boolean true

Devuelve un booleano convertido desde
cualquier otro tipo de valor.

Number() var x = "4.5"; // string

x = Number(x);

// number 4.5

Devuelve un número convertido desde una
cadena de texto.

parseFloat() var x = "4.5"; // string

x = parseFloat(x);

// number 4.5

Devuelve un número de punto flotante
convertido desde una cadena de texto.

parseInt() var x = "4.5"; // string

x = parseInt(x);

// number 4

Devuelve un número entero convertido desde
una cadena de texto.

String() var x = 6; // number

x = String(x):

// string '6'

Convierte el valor de un objeto en una cadena
de texto.

<script>

 var edad = prompt("Dime tu edad"); // string

 edad = Number(edad); //number

</script>

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

20

OPERADORES
Los operadores nos permiten aplicar cambios, cálculos o procesos sobre los valores de las variables según su

tipo, por lo tanto es muy importante controlar el tipo de las variables para asegurarnos de que el operador se

aplique correctamente. Así, categorizamos a los operadores según el tipo de variable a quien se aplica.

El primer operador que ya hemos visto es el de asignación para poder hacer las instanciaciones:

Tipo de operador Ejemplo Explicación

= nombreCliente = "María"; Permite asignar un valor a una variable en una
instanciación.

TEXTO

Los operadores de texto se pueden utilizar en las cadenas de texto y variables tipo string:

Tipo de operador Ejemplo Explicación

" nomClient = "Maria"; Permite definir un valor tipo texto (string).

' cognomClient = 'Garcia'; Permite definir un valor tipo texto (string).

+ alert(nomClient + ' ' +

cognomClient)

Permite concatenar dos valores en una misma
cadena de texto.

+= nomClient += ' ';

nomClient += cognomClient;

Asignación con concatenación: permite
concatenar al mismo valor que ya está en una
variable

` alert(`Benvingut/da

${nomClient}

${cognomClient}`);

El acento abierto permite hacer templates:
estructuras tipo texto donde podemos emplear
libremente las otras comillas y donde añadimos
valores JavaScript con ${}

\" alert("Benvinguts a \"La

Meva Web\"!");

Comillas literales: con la barra de escape
podemos añadir " sin que se interpreten como
un operador.

\' alert(' Benvinguts a

L\'Hospitalet');

Comillas literal: con la barra de escape podemos
añadir ' sin que se interprete como un operador.

\n alert("Benvinguts a:\n

\"La Meva Web\"!");

Salto de línea: con la barra de escape podemos
añadir un salto de línea en una ventana alert,
prompt o confirm.

\t alert("Benvinguts a:\n\t

\"La Meva Web\"!");

Tabulación: con la barra de escape podemos
añadir una tabulación en una ventana alert,
prompt o confirm.

NÚMEROS

Los operadores numéricos permiten hacer cálculos sobre valores tipo number:

Tipo de operador Ejemplo Explicación

+ var num = 7 + 3; // 10 Suma.

- var num = 7 - 3; // 4 Resta.

* var num = 7 * 3; // 21 Producto.

/ var num = 7 / 3; // 2,33 Fracción.

% var num = 7 % 3; // 1 Módulo: devuelve el residuo de una división.

+= var num = 7;

num += 3; // 10

Asignación con suma: suma el número al valor
de la variable.

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

21

-= var num = 7;

num -= 3; // 4

Asignación con resta: resta el número al valor de
la variable.

*= var num = 7;

num *= 3; // 21

Asignación con multiplicación: multiplica el
número al valor de la variable.

/= var num = 7;

num /= 3; // 2.33

Asignación con fracción: hace la fracción del
número al valor de la variable.

++ var num = 7;

num ++; // 8

Incremento unitario: suma 1 al valor de la
variable.

-- var num = 7;

num --; // 6

Decremento unitario: resta 1 al valor de la
variable.

<script>

 var edad = prompt("Dime tu edad"); // string

 edad = parseInt(edad); //number

 edad ++;

 alert(`¡El próximo aniversario cumplitàs ${edad} años!`);

</script>

LÓGICOS Y DE COMPARACIÓN

Estos operadores de comparación devuelven siempre un valor boolean de true o false:

Tipo de operador Ejemplo Explicación

== var comp = 7 == 3; // false Igualdad: compara dos valores.

=== var comp = 7 === '7'; //false Identidad: compara dos valores y su tipo.

!= var comp = 7 != 3; // true Diferencia.

> var comp = 7 > 3; // true Mayor que: compara dos valores.

>= var comp = 7 >= 3; // true Mayor o igual que: compara dos valores.

< var comp = 7 < 3; // false Menor que: compara dos valores.

<= var comp = 7 <= 3; // false Menor o igual que: compara dos valores.

&& var comp = 7 > 3 && 3 > 7;

// false

Operador Y lógico: concatena dos
comparaciones.

|| var comp = 7 > 3 || 3 > 7;

// true

Operador O lógico: concatena dos
comparaciones.

! var comp = !true; // false Operador de negación: niega el valor.

La operación lógica AND obtiene su resultado combinando dos valores booleanos. El operador se indica mediante

el símbolo && y su resultado solamente es true si los dos operandos son true:

variable1 variable2 variable1 && variable2

true true true

true false false

false true false

false false false

La operación lógica OR también combina dos valores booleanos. El operador se indica mediante el símbolo || y

su resultado es true si alguno de los dos operandos es true:

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

22

variable1 variable2 variable1 || variable2

true true true

true false true

false true true

false false false

En el siguiente ejemplo se plantea dos posibilidades: que el visitante acepte o no la política de privacidad y que

la edad que ha informado sea superior o igual a 18. Si se cumplen ambas posibilidades (ambas tienen un valor

true) tendremos true en la variable controlAcceso; si cualquiera de las variables aceptacion o controlEdad tienen

un valor false, tendremos un false en la variable controlAcceso:

<script>

 var aceptacion = false, edad = 0, controlEdad = false, controlAcceso = false;

 aceptacion = confirm("Aceptas la política de privacidad?");

 edad = parseInt(prompt("Dime tu edad "));

 controlEdat = edad >= 18

 controlAcceso = aceptacion && controlEdat;

 alert(`¿Puedes acceder? ${controlAcceso}`);

</script>

PRIORIDAD DE LOS OPERADORES

Según el orden de prioridad, los operadores se ejecutan antes o después:

1. OPERADORES DE CÁLCULO DE 1º ORDEN:

 + suma

 - resto

 * multiplicación

 / división (fracción)

 % residuo de una división

2. OPERADORES CONDICIONALES DE 2º ORDEN:

 ==, ===

 >=, <=

 >, <

 !=

3. OPERADORES LÓGICOS DE 3º ORDEN:

 &&

 ||

 !

4. OPERADORES DE CÁLCULO DE 4º ORDEN:

 +=; -=; *=; /=; %= operador matemático combinado

5. OPERADORES DE CÁLCULO DE 5º ORDEN:

 ++ incremento unitario

 -- decremento unitario

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

23

ESTRUCTURAS DE CONTROL
Los programas que se pueden realizar utilizando solamente variables y operadores son una simple sucesión lineal

de instrucciones básicas: el navegador lee cada sentencia, la ejecuta una única vez y salta a la siguiente hasta

que se acaba el documento.

No obstante, no se pueden realizar programas que muestren un mensaje si el valor de una variable es igual a un

valor determinado y no muestren el mensaje en el resto de casos. Tampoco se puede repetir de manera eficiente

una misma instrucción, como por ejemplo sumar un determinado valor a todos los elementos de un array.

Para realizar este tipo de programas son necesarias las estructuras de control de flujo, que son instrucciones del

tipo "si se cumple esta condición, hazlo; si no se cumple, haz eso otro". También existen instrucciones del tipo

"repite esto mientras se cumpla esta condición".

Las estructuras de control de flujo permiten controlar el flujo de ejecución del código delimitando

qué parte del código se ejecuta o cuántas veces lo hace.

Si se utilizan estructuras de control de flujo, los programas dejan de ser una sucesión lineal de instrucciones para

convertirse en programas inteligentes que pueden tomar decisiones en función del valor de las variables.

Las estructuras de control de flujo se caracterizan por cerrar el código a evaluar entre llaves de apertura { y cierre

}. Estas llaves delimitan un ámbito –scope- y por lo tanto podemos declarar variables con let y que estas variables

sólo sean válidas dentro de las llaves.

Otra característica es la capacidad de anidar una estructura dentro de otras, de forma que podemos crear

algoritmos complejos con múltiples respuestas.

CONDICIONES

Cuando queremos programar diferentes respuestas u opciones en nuestro código, lo hacemos según una

condición: si se cumple, damos una respuesta, si no, damos otra respuesta. Es decir: como programadores

debemos dejar en el código todas las opciones que necesitamos plantear, pero en la ejecución de este código

sólo se mostrará la opción adecuada en ese momento.

Para plantear las condiciones tenemos diferentes estructuras: el IF nos permite plantear una posibilidad y el ELSE

complementa la contraria; por otra parte, el SWITCH nos permite plantear diferentes posibilidades.

IF
La estructura más utilizada en JavaScript y en la mayoría de lenguajes de programación es la estructura if. Se

emplea para tomar decisiones en función de una condición. Su definición formal es:

<script>

 if (condición) {

 ...

 }

</script>

Si la expresión contenida entre paréntesis o condición devuelve un valor true (por ejemplo, una comparación)

se ejecutan todas las instrucciones –sentencias- que se encuentran dentro de {...}. Si la condición no se cumple

(es decir, si su valor es false) no se ejecuta ninguna instrucción –sentencias- contenida en {...} y el programa

continúa ejecutando el resto de instrucciones –sentencias- del script.

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

24

<script>

 var aceptacion = false, edad = 0, controlEdad = false, controlAcceso = false;

 aceptacion = confirm("Aceptas la política de privacidad?");

 edad = parseInt(prompt("Dime tu edad "));

 controlEdat = edad >= 18

 controlAcceso = aceptacion && controlEdat;

 if (controlAcceso === true) {

 alert(`¡Bienvenido/da!`);

 }

 if (controlAcceso === false) {

 alert(`No puede acceder`);

 }

</script>

La expresión dentro de los paréntesis debe devolver un valor booleano de true, y en el ejemplo anterior la

variable controlAcceso ya es de este tipo, por lo tanto la primera comparación es redundante, y la segunda

comparación se puede simplificar si empleamos el operador de negación:

<script>

 var aceptacion = false, edad = 0, controlEdad = false, controlAcceso = false;

 aceptacion = confirm("Aceptas la política de privacidad?");

 edad = parseInt(prompt("Dime tu edad "));

 controlEdat = edad >= 18

 controlAcceso = aceptacion && controlEdat;

 if (controlAcceso) {

 alert(`¡Bienvenido/da!`);

 }

 if (!controlAcceso) {

 alert(`No puede acceder`);

 }

</script>

En este ejemplo se plantea las dos posibilidades de la variable controlAcceso: que sea true o false, pero según las

respuestas a las preguntas de aceptacion y edad sólo tendrá un único valor, por lo tanto sólo una de las

condiciones se cumplirá y uno de los alert se ejecutará.

IF ... ELSE
Normalmente, las decisiones a realizar no son del tipo "si se cumple la condición, hazlo; si no se cumple, no hagas

nada", sino suelen ser del tipo "si se cumple esta condición, hazlo; si no se cumple, haz eso otro".

Para este segundo tipo de decisiones, existe una variante de la estructura if llamada if... else. Su definición formal

es la siguiente:

<script>

 if (condición) {

 ...

 } else {

 ...

 }

</script>

Si la expresión contenida entre paréntesis o condición devuelve un valor true (por ejemplo, una comparación)

se ejecutan todas las instrucciones –sentencias- que se encuentran dentro del primer {...}. Si la condición no se

cumple (es decir, si su valor es false) se ejecutan todas las instrucciones –sentencias- que se encuentran dentro

del segundo {...} precedido de else.

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

25

El comando else no puede ir solo: siempre acompañará a un if para definir la situación contraria o false de la

condición.

<script>

 var aceptacion = false, edad = 0, controlEdad = false, controlAcceso = false;

 aceptacion = confirm("Aceptas la política de privacidad?");

 edad = parseInt(prompt("Dime tu edad "));

 controlEdat = edad >= 18

 controlAcceso = aceptacion && controlEdat;

 if (controlAcceso) {

 alert(`¡Bienvenido/da!`);

 }

 else {

 alert(`No puede acceder`);

 }

</script>

En este ejemplo, hemos sustituido el segundo if y su condición por un else: en ambas condiciones se evaluaba la

misma variable, por lo tanto, podemos simplificar la estructura de control de flujo condicional a una sola

evaluación con dos posibilidades.

Como se menciona al principio del capítulo, las estructuras de control se pueden anidar si queremos dar

diferentes respuestas. Por ejemplo, según este diagrama queremos dar diferentes respuestas y a continuación

se plantea el código con if anidados:

<script>

 var aceptacion = false, edad = 0;

 aceptacion = confirm("¿Aceptas la política de privacidad?");

 if (!aceptacion) {

 alert("No puede acceder sin aceptar la política de privacidad ");

 } else {

 edad = parseInt(prompt("Di tu edad "));

 if (edad < 18) {

 alert("No se permite el acceso a menores de edad");

 } else {

 alert("¡Bienvenido/da!");

 }

 }

</script>

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

26

ELSE ... IF
Cuando necesitamos verificar varias opciones lo más fácil es utilizar else if, así evitamos tener que anidar en

exceso. Es importante recordar que la primera condición válida será la que use el navegador, y que ignorará

todas las demás. Su definición formal es la siguiente:

<script>

 if (condición) {

 ...

 } else if (condición) {

 ...

 } else if (condición) {

 ...

 } else {

 ...

 }

</script>

Si la primera condición es false, no se ejecuta y salta a la segunda; si ésta también es false, no se ejecuta y salta

a la tercera; y así hasta que encuentra una condición true que se ejecute o el último else.

Con el ejemplo anterior, quedaría así el código con else ... if:

<script>

 var aceptacion = false, edad = 0;

 aceptacion = confirm("¿Aceptas la política de privacidad?");

 edad = parseInt(prompt("Di tu edad "));

 if (!aceptacion) {

 alert("No puede acceder sin aceptar la política de privacidad ");

 } else if (edad < 18) {

 alert("No se permite el acceso a menores de edad");

 } else {

 alert("¡Bienvenido/da!");

 }

</script>

TERNARIO
Para simplificar la estructura de una condición tenemos el operador condicional ternario: no es un operador

como tal sino una estructura donde su definición formal es la siguiente:

condicion ? expresionTrue : expresionFalse

Es muy práctica en el caso de instanciar una variable con dos posibilidades:

<script>

 var edad = parseInt(prompt("Di tu edad "));
 var mensaje = (edad >= 18) ? "¡Bienvenido/da!" : " No se permite el acceso a menores de edad";

 alert(mensaje);

</script>

SWITCH
Hasta ahora las estructuras if permiten evaluar una condición que puede ser true o false; pero si la condición

puede tener múltiples valores, la estructura switch permite evaluar diferentes posibilidades llamadas casos. Cada

caso es un punto de entrada, pero hay que definir el final de cada caso con un break. Y si se da la situación que

ningún caso coincide, podemos establecer un resultado por defecto con el default:

<script>

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

27

 switch (expresión) {

 case valor1:

 sentencias;

 break;

 case valor2:

 sentencias;

 break;

 case valor3:

 case valor4:

 sentencias;

 break;

 default:

 sentencias;

 break;

 }

</script>

Como los casos son solo puntos de inicio y no de final, podemos poner diferentes casos seguidos para que tengan

el mismo resultado. La expresión puede ser una variable tipo texto o numérica, los valores son las diferentes

posibilidades y a continuación utilizamos los dos puntos ":" para indicar todas las sentencies que deben

ejecutarse hasta el break. Sin el break, se ejecutarían todas las sentencies hasta el cierre del switch.

<script>

 const nombreUsuario = prompt("Di tu nombre:");

 var mensaje = "";

 switch (nombreUsuario) {

 case "Jordi":

 mensaje = "Eso es pan comido.";

 break;

 case "María":

 mensaje = "De tal palo, tal astilla.";

 break;

 case "Pep":

 case "Ona":

 mensaje = "Más vale prevenir que curar.";

 break;

 default:

 mensaje = "No es oro todo lo que reluce.";

 break;

 }

 alert(mensaje);

</script>

ISNAN()

Un caso especial es la función gobal isNaN(): es una función que devuelve un booleano según el valor no es

un número –true- o sí es un número –false-:

<script>

 var edad = Number(prompt("Di tu edad")), mensaje = "";

 if (isNaN(edad)) {

 mensaje = "!Hay que introducir una edad válida!";

 } else if (edad >= 18) {

 mensaje = "¡Bienvenido/da!";

 } else {

 mensaje = "No se permite el acceso a menores de edad.";

 }

 alert(mensaje);

</script>

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

28

BUCLES

El concepto de bucle hace referencia a la repetición de sentencias tantas veces como haga falta sin la necesidad

de duplicar líneas de código, por lo tanto, rompemos la linealidad de la ejecución del navegador.

WHILE
Permite repetir las sentencies anidadas en las llaves mientras la condición sea true. Esto implica que necesitamos

una instanciación inicial, una comparación que mantenga el bucle y una actualización para evitar entrar en un

bucle infinito:

<script>

 var control = valor; // inicialización

 while (control == valor) { // condición

 ...

 control = nuevoValor; // actualización

 }

</script>

Un ejemplo es pedir un cierto tipo de dato, y no dejar continuar al usuario hasta que lo introduzca correctamente:

<script>

 var edad = parseInt(prompt("Di tu edad")), mensaje = "";

 while (isNaN(edad)) {

 alert ("!Hay que introducir una edad válida!");

 edad = parseInt(prompt("Di tu edad"));

 }

 mensaje =(edat>=18)? "¡Bienvenido/da!" : " No se permite el acceso a menores de edad ";

 alert(mensaje);

</script>

DO ... WHILE
Si lo que necesitamos es hacer una acción como mínimo una vez, y luego evaluar si hay que repetirla, podemos

utilizar la estructura do ... while porque justamente hace eso: primero ejecuta el contenido de las llaves y luego

evalúa si hay que continuar:

<script>

 do {

 ...

 } while (condición)

</script>

En el ejemplo anterior, pedimos dos veces la edad; por lo tanto, podemos simplificar el código pidiéndolo siempre

una vez y después evaluar si hay que volver a pedirlo:

<script>

 var edad = null, mensaje = "";

 do {

 mensaje =(edad===null)?"Di tu edad":"!Hay que introducir una edad válida!";

 edad = parseInt(prompt(mensaje));

 } while (isNaN(edad))

 mensaje =(edat>=18)? "¡Bienvenido/da!" : " No se permite el acceso a menores de edad ";

 alert(mensaje);

</script>

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

29

FOR
Este bucle presenta una estructura optimizada para controlar la ejecución de la iteración de manera numérica,

es decir, para especificar exactamente cuántas veces queremos que se haga el bucle.

El bucle for se divide en tres partes separadas por un punto y coma:

1. Expresión inicial: será todo aquello que se ejecutará al iniciarse el bucle. Normalmente la declaración

de una variable numérica instanciada con el valor inicial.

2. Condición: será evaluada antes de cada iteración. Este es el único parámetro obligatorio y es una

condición de comparación con la variable inicial que mantiene el bucle mientras devuelve true.

3. Expresión de actualización: se ejecutará al final de cada iteración. Hay que aumentar o disminuir el

valor de la variable inicial para que la condición llegue un momento que vuelva false y evitar entrar en

un bucle infinito.

<script>

 for (inicialización; condición; actualización) {

 ...

 }

 for (let i = 1; i <= 10; i ++) {

 console.log(i);

 }

 for (let i = 10; i >= 1; i --) {

 console.log(i);

 }

</script>

Normalmente, la variable que controla los bucles for se llama i, ya que recuerda a la palabra índice y su nombre

tan corto ahorra mucho tiempo y espacio. Si hay que hacer bucles anidados podemos utilizar los nombres de

variables j o k.

La variable inicial se declara dentro de la estructura de control, por lo tanto, tiene un ámbito –scope- local, por

lo tanto, es el ejemplo de uso del let. Estos mismos ejemplos se pueden hacer con while, pero no queda el código

tan ordenado como con el for:

<script>

 var i = 1; // inicialización

 while (i <= 10) { // condición

 console.log(i);

 i ++; // actualización

 }

</script>

FOR ... IN I FOR ... OF
Un caso especial de bucles son estas estructuras for pensadas para recorrer matrices –arrays-, por lo tanto los

veremos más adelante.

SENTENCIAS BREAK Y CONTINUE
La estructura de control for es muy sencilla de utilizar, pero tiene el inconveniente de que el número de

repeticiones que se realizan sólo se pueden controlar mediante las variables definidas en la zona de actualización

del bucle. Las sentencias break y continue permiten manipular el comportamiento normal de los bucles for para

detener el bucle o para saltarse algunas repeticiones. Concretamente, la sentencia break permite acabar de

manera abrupta un bucle y la sentencia continue permitiendo saltarse algunas repeticiones del bucle.

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

30

FUNCIONES
En programación es muy frecuente que un determinado procedimiento de cálculo definido por un grupo de

sentencias deba repetirse varias veces, ya sea en un mismo programa o en otros programas, lo que implica que

se deba escribir tantos grupos de aquellas sentencias como veces aparezca este proceso.

La herramienta más potente con la que se cuenta para facilitar, reducir y dividir el trabajo en programación, es

escribir aquellos grupos de sentencias una sola y única vez bajo la forma de una función.

Un programa es un desarrollo complejo de realizar y por lo tanto es importante que esté bien estructurado y

también que sea inteligible para las personas. Si un grupo de sentencias realiza una tarea bien definida, entonces

puede estar justificado el aislar estas sentencias formando una función, aunque resulte que sólo se la nombre o

utilice una vez.

Hasta ahora hemos visto cómo resolver un problema planteando un único algoritmo. Con funciones podemos

segmentar un programa en varias partes. Ante un problema, planteamos un algoritmo, este puede constar de

pequeños algoritmos.

Una función es un conjunto de sentencias encapsuladas que puede ser utilizado desde diferentes

partes de un programa tantas veces como haga falta.

Las funciones de JavaScript son el alma de este lenguaje, por ello se consideran ciudadanos de primera clase, una

entidad que soporta todas las operaciones generalmente disponibles para otras entidades: estas operaciones

normalmente incluyen ser pasados como argumento, retornados de una función y asignados a una variable.

A partir de ahora veremos la aplicación de los principios de la programación funcional en otros

apartados de este manual.

DECLARACIÓN E INVOCACIÓN

Podemos declarar las funciones de dos formas: instanciando una variable con una función anónima o utilizando

el comando function y dando un nombre único siguiendo las mismas directrices al dar un nombre a una variable.

La primera diferencia entre una variable y una función es que en una variable almacena datos, y en una función

almacena sentencias; la segunda, que al declarar una función usamos los paréntesis "()": en el siguiente apartado

explicaremos su uso.

<script>

 // declaración en una variable con una función anónima:

 const miFuncion = function () {

 ...

 }

 // declaración con nombre:

 function miFuncion () {

 ...

 }

</script>

Una vez declarada la función, todo el código dentro de sus llaves quedará a la espera y el navegador no lo

ejecutará hasta que la función sea invocada a través de su nombre:

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

31

<script>

 // declaración con nombre:

 function miFuncion () {

 ...

 }

 // invocación a través del nombre:

 miFuncion ();

</script>

Dentro de las funciones podemos declarar variables, pero como el contenido se cierra entre llaves "{}", las

funciones generan su propio ámbito –scope- y podemos utilizar variables globales (declaradas fuera de las

funciones) o variables locales (declaradas dentro de las funciones con let).

PARÁMETROS Y ARGUMENTOS

Cuando queremos hacer funciones con un nivel de abstracción realmente alto, tenemos que recurrir al

aislamiento. De tal forma que nuestra función no dependa de ciertas variables o datos externos a ella.

Cuando declaramos una función, podemos incluir ciertos parámetros entre los paréntesis que actuarán como

referencias. Funcionarán internamente igual que variables locales, de tal forma que a la hora de ejecutar la

función podremos pasarle ciertos argumentos –valores- y así tener funciones con un mayor nivel de abstracción.

Al declarar una función podemos añadir tantos parámetros como necesitamos separados por comas, pero las

buenas prácticas de programación lo limitan a tres; si necesitas más, es necesario que desgloses la función en

varias más simples. Cada parámetro tendrá un nombre propio, como si fuera una variable, pero al ser local se

pueden repetir los mismos nombres entre diferentes funciones. Y en la invocación, pasamos los argumentos –

valores- de cada parámetro en el mismo orden y también separado por comas ",":

<script>

 // declaración con parámetros

 function miFuncion (param1, param2, param3) {

 ...

 }

 // invocación con argumentos:

 miFuncion (arg1, arg2, arg3);

</script>

En el siguiente ejemplo, declaramos una función con un parámetro que se utiliza dentro de la función como una

variable local, y la invocamos varias veces: en cada invocación pasamos un valor diferente como argumento:

<script>

 function saluda(nombre) {

 alert("Hola " + nombre);

 }

 saluda ("Ot");

 saluda ("Marta");

</script>

FUNCIONES QUE DEVUELEN UN VALOR

Otro de los puntos fuertes a la hora de plantear estructuras de código modulares y reutilizables, es tener en

cuenta el retorno. El retorno nos permite devolver un valor al terminar de ejecutarse la función. Este valor puede

ser cualquier tipo de dato de los muchos que tenemos en JavaScript. Para que las funciones sean modulares y

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

32

reutilizables es necesario que no todas finalicen un proceso, por ejemplo mostrar un alert, sino que hagan un

proceso y devuelvan un valor, y aquel que haya invocado la función recoja este valor y continúe procesándolo.

Para hacer que una función devuelva un valor, solo hay que utilizar el comando return al final del código de la

misma:

<script>

 function mensaje (texto) {

 return "Hola " + texto;

 }

 function saluda (nombre) {

 alert (mensaje (nombre))

 }

 saluda ("Ot");

 saluda ("Marta");

</script>

ANIDAMIENTO

Dentro de las llaves de las funciones podemos anidar otras estructuras ya vistas como condiciones y bucles, pero

también otras funciones que sólo se podrán invocar dentro de la función principal. Esto, por un lado, puede

complicar el desarrollo del código, pero por el otro nos da muchas más posibilidades de modularización y

reutilización.

<script>

 var nombre = null;

 function alerta (tipo) {

 let texto = "";

 function controlEdad () {

 let edad = null, mensaje = "";

 do {
 mensaje =(edad===null) ? "Di tu edad" : "¡Hay que introducir una edad válida!";

 edad = parseInt(prompt(mensaje));

 } while (isNaN(edad))
 mensaje=(edad>=18)?"¡Bienvenido/da!":"No se permite el acceso a menores de edad";

 return mensaje;

 }

 function preguntaNombre () {

 if (nombre === null) {

 nombre = prompt("Cuál es tu nombre?");

 }

 return "Hola " + nombre;

 }

 switch (tipus) {

 case "edad":

 text = controlEdad();

 break;

 default:

 text = preguntaNombre();

 break;

 }

 return text;

 }

 alert (alerta ("edad"));

 alert (alerta ("saludo"));

</script>

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

33

FAT ARROW

Las funciones fat arrow se utilizan para omitir la palabra function y simplificar la estructura original de las

funciones, pero esta estructura es limitada y no se puede usar en todas las situaciones. Esta simplificación

también permite que el return sea implícito si no se usan las llaves "{}"; incluso podemos ahorrarnos los

paréntesis "()" si tenemos un único parámetro. Después, la invocación se hace como siempre a través del

nombre.

Desglose de la función flecha:

Según la definición de una función tradicional tendríamos la siguiente declaración:

<script>

 function duplicar (a){

 return a * 2;

 }

</script>

Pero con las funciones flecha lo podemos simplificar:

1. Elimina la palabra function y coloca la flecha entre el parámetro y la llave de apertura:

<script>

 const duplicar = (a) => {

 return a * 2;

 }

</script>

2. Saca las llaves del cuerpo y la palabra return: el retorno está implicito:

<script>

 const duplicar = (a) => a * 2;

</script>

3. Suprime los paréntesis de los parámetros si sólo hay un único parámetro:

<script>

 const duplicar = a => a * 2;

</script>

Una de las razones por las que se introdujeron las funciones flecha fue para eliminar complejidades del ámbito

this y hacer que la ejecución de funciones sea mucho más intuitiva. En las funciones tradicionales, de manera

predeterminada, this está en el ámbito del window (del documento), pero en las funciones flecha no

predeterminan this en el ámbito o alcance del documento: lo ejecutan en el ámbito o alcance en que se crean.

Este concepto de this se desarrolla más adelante en este manual.

FUNCIONES GENERALES

Las funciones generales son funciones ya definidas en el JavaScript; en este manual ya se han comentado algunas

como las funciones de conversión de tipo de variable o para evaluar si un valor es o no un número, pero existen

algunas más. La más destacable es la función eval() que permite evaluar una expresión de texto aportada como

argumento como si fuera una sentencia:

<script>

 const texto = "2 + 3";

 alert(eval(texto));

</script>

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

34

EVENTOS
En la introducción de este manual se explica que los eventos son otra forma de incluir código JavaScript en el

código HTML como atributos de las etiquetas: el valor del atributo es el código JavaScript:

<button type="button" evento="sentencias;">Botón</button>

Los eventos son las diferentes formas que tenemos de interactuar con los diferentes elementos –etiquetas- del

código HTML del documento. Una misma etiqueta puede tener asociados diferentes eventos.

Pero dentro de estas comillas estamos muy limitados para añadir todas las estructuras que hemos visto hasta

ahora porque no podemos añadir el código en diferentes líneas y el código se ofusca mucho, y tampoco podemos

emplear comillas dobles. Por lo tanto, los eventos son una forma ideal de combinar con las funciones: podemos

declararlas en los scripts e invocarlas dentro de los eventos:

<script>

 const doblar = a => a * 2;

</script>

<p>

 <button type="button" onclick="alert(doblar(3));">Doblar 3</button>

 <button type="button" onclick="alert(doblar(7));">Doblar 7</button>

</p>

Nombre del evento como atributo Definición

onblur Cuando un elemento de formulario pierde el foco

onchange Cuando el valor de un campo de formulario es modificado

onclick Cuando se hace clic con el botón del ratón

oncontextmenu Cuando se hace clic con el botón alternativo del ratón

ondblclick Cuando se hace doble clic en un objeto

onfocus Cuando un elemento de formulario adquiere el foco

oninput Cuando se está modificando un campo de formulario

onkeydown Cuando se presiona una tecla

onkeypress Cuando se presiona una tecla

onkeyup Cuando se deja de presionar una tecla

onload Cuando una página o imagen acaba de cargarse

onmousedown Cuando se pite el botón del ratón

onmousemove Cuando se mueve el ratón

onmouseout Cuando el cursor del ratón sale del elemento

onmouseover Cuando el cursor del ratón se pone encima

onmouseup Cuando se deja ir el botón del ratón

onreset Cuando se pite el botón de reset de un formulario

onresize Cuando se modifica el tamaño de una ventana

onselect Cuando se selecciona texto de un campo de formulario

onsubmit Cuando se pite el botón sumido de un formulario

onwheel Cuando la rueda del ratón sube o baja sobre un elemento

En el siguiente ejemplo se ve el evento onsubmit y oninput aplicado a un formulario:

<form action="" onsubmit="return confirm('¿Quieres enviar el formulario?');">

 <input type="text" name="form" value="¡Enviado!" oninput="alert('¡Cambio!');">

 <button type="submit">Enviar</button>

</form>

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

35

OBJETOS INTEGRADOS DEL LENGUAJE
Son los objetos nativos del lenguaje, definidos por la especificación ECMAScript. Existen siempre,

independientemente de donde se ejecute JavaScript. También se llaman tipo nativos (native objects) o

constructores nativos (native constructores). Estos objetos forman parte del núcleo del lenguaje: no los creas tú,

ya están cuando arranca el motor de JavaScript.

Como ya están creados, funcionan como plantillas que podemos instanciar en variables con la función

constructora new. Estos objetos nos proporcionan formas más complejas para manipular la información gracias

a que tienen propiedades y métodos.

Podemos imaginar los objetos del JavaScript como los objetos físicos reales: si cogemos un rotulador, este tiene

propiedades –información- como la longitud, volumen o color, pero también tiene métodos –acciones- como

destapar, pintar o tapar.

Como tenemos los objetos ya definidos, sus propiedades y métodos también están ya definidos, es decir, tienen

nombres ya reservados. Sintácticamente, utilizaremos la función constructora new para crear un objeto nativo:

<script>

 const texto = new String("¡Hola mundo!");

</script>

A partir de ahora, la variable texto será un nuevo objeto (en este caso string) y podemos aplicar propiedades y

métodos con la sintaxis del punto ".". Los métodos, al ser acciones, son funciones ya predefinidas y se escriben

con paréntesis "()" porque pueden tener argumentos:

<script>

 const texto = new String("¡Hola mundo!");

 console.log(texto.length); // 12

 console.log(texto.toUpperCase()); // "¡HOLA MUNDO!"

</script>

TEXTO

El objeto String es el que nos permite manipular los textos, pero a nivel de aplicación de métodos y propiedades,

una variable tipo texto también los recibe:

<script>

 const saludo1 = new String("¡Hola mundo!");

 const saludo2 = "¡Hola mundo!";

</script>

Propiedad Descripción

length Devuelve la longitud de una cadena.

Método (argumentos) Descripción

at() Devuelve un carácter indexado de una cadena.

charAt() Devuelve el carácter a un índice (posición) especificado.

charCodeAt() Devuelve el Unicode del carácter en un índice especificado.

codePointAt() Devuelve el valor Unicode en un índice (posición) de una cadena.

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

36

concat() Devuelve dos o más cadenas unidas.

endsWith() Devuelve si una cadena acaba con un valor especificado.

fromCharCode() Devuelve los valores Unicode como caracteres.

includes() Devuelve si una cadena contiene un valor especificado.

indexOf() Devuelve el índice (posición) de la primera aparición de un valor en una
cadena.

isWellFormed() Retornos ciertos si una cadena está bien formada.

lastIndexOf() Devuelve el índice (posición) de la última aparición de un valor en una
cadena.

localeCompare() Compara dos cadenas en la localización actual.

match() Busca una cadena por un valor, o una expresión regular, y devuelve las
coincidencias.

matchAll() Busca una cadena por un valor, o una expresión regular, y devuelve las
coincidencias.

padEnd() Pone una cadena al final.

padStart() Apade una cadena desde el principio.

prototype Te permite añadir propiedades y métodos a un objeto.

repeat() Devuelve una nueva cadena con varias copias de una cadena.

replace() Busca un patrón en una cadena y devuelve una cadena donde se
sustituye la primera coincidencia.

replaceAll() Busca un patrón en una cadena y devuelve una nueva cadena donde se
sustituyen todas las coincidencias.

search() Busca en una cadena un valor, o expresión regular, y devuelve el índice
(posición) de la coincidencia.

slice() Extrae una parte de una cadena y devuelve una nueva cadena.

split() Divide una cadena en una matriz de subcadenas.

startsWith() Comprueba si una cadena empieza con caracteres especificados.

substr() Depreciado. Utiliza substring() o slice() en lugar de eso.

substring() Extrae caracteres de una cadena, entre dos índices (posiciones)
especificados.

toLocaleLowerCase() Devuelve una cadena convertida a letras minúsculas, utilizando la
localización del anfitrión.

toLocaleUpperCase() Devuelve una cadena convertida a mayúsculas, utilizando la localización
del anfitrión.

toLowerCase() Devuelve una cadena convertida a letras minúsculas.

toString() Devuelve una cadena o un objeto cadena como cadena.

toUpperCase() Devuelve una cadena convertida a letras mayúsculas.

toWellFormed() Devuelve una cadena donde “sustitutos solitarios” se sustituyen por el
carácter de sustitución Unicode.

trim() Devuelve una cadena con espacios en blanco eliminados.

trimEnd() Devuelve una cadena con espacios en blanco eliminados desde el final.

trimStart() Devuelve una cadena con espacios en blanco eliminados desde el inicio.

valueOf() Devuelve el valor primitivo de una cadena o de un objeto cadena.

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

37

NÚMERO

El objeto integrado Math nos aporta infinidad de recursos matemáticos avanzados como la constante de Euler,

gestión de logaritmos, senos, cosenos, tangentes... Cada lector debe indagar y valorar lo que realmente quiere

usar, ya que muchos de estos métodos y propiedades van más allá de nuestros objetivos, y no aportan

directamente valor al contexto de aprender a programar en JavaScript. Pero sí hay algunos métodos que pueden

ser útiles:

Método (argumentos) Descripción

ceil(x) Devuelve x, redondeado hacia arriba al entero más cercano.

floor(x) Devuelve x, redondeado hacia abajo al entero más cercano.

max(x1,x2,..) Devuelve el número con el valor más alto.

min(x1,x2,..) Devuelve el número con el valor más bajo.

random() Devuelve un número aleatorio entre 0 y 1.

round(x) Redondea x al entero más cercano.

<script>

 var x = Math.random() * 10;

 x = Math.ceil(x);

 console.log(x);

</script>

El objeto integrado Number nos da acceso a métodos similares a las funciones generales:

Método (argumentos) Descripción

isFinite() Comprueba si un valor es un número finito.

isInteger() Comprueba si un valor es un entero.

isNaN() Comprueba si un valor es NaN.

parseFloat() Analiza una cadena y devuelve un número.

parseInt() Analiza una cadena y devuelve un número entero.

toFixed(x) Formata un número con x números de dígitos después del punto
decimal.

toLocaleString() Convierte un número en una cadena, según la configuración local.

toPrecision(x) Formata un nombre a x longitud.

toString() Convierte un número en una cadena.

valueOf() Devuelve el valor primitivo de un número.

<script>

 let x = Math.random() * 10;

 console.log(x.toFixed(0));

</script>

ARRAY

Los arrays son estructuras que nos permiten almacenar muchos datos, sin tener que preocuparnos por el orden

o la organización interna: se organiza automáticamente. Otra forma más sencilla de entenderlo, es imaginar que

un array es sencillamente como una lista de diferentes valores tipo texto, números, booleanos e incluso otros

arrays anidados -llamados arrays multidimensionales-.

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

38

Podemos instanciar una variable con la cláusula new o de forma abreviada con corchetes "[]":

<script>

 const nombres1 = new Array('María','José');

 const nombres2 = ['María','José'];

</script>

Si queremos recuperar algún valor del array, solo hay que utilizar el nombre del objeto y entre los corchetes

añadir un número de posición, teniendo en cuenta que los valores de un array empiezan a ordenarse desde el 0:

<script>

 // 0 1

 const nombres = ['María','José'];

 console.log(nombres[0]); // María

</script>

Propiedad Descripción

length Devuelve la cantidad de elementos del array.

Con esta propiedad podemos hacer un bucle para recorrer todos los elementos de un array:

<script>

 const nombres = ['María','José'];

 const longitud = nombres.length;

 for (let i = 0; i < longitud; i ++) {

 console.log(nombres[i]);

 }

</script>

Pero en el captítulo de los bucles se mencionan las estructuras for ... in i for ... of que son estructuras más

optimizadas para reccorer los valores de un array:

<script>

 const nombres = ['María','José'];

 for (let i in nombres) { // la variable "i" almacena las posiciones

 console.log(nombres[i]);

 }

 for (let nombre of nombres) { // la variable "nombre" almacena el valor

 console.log(nombre);

 }

</script>

Método (argumentos) Descripción

at() Devuelve un elemento indexado de un array.

concat() Une arrays y devuelve un array con los arrays unidos.

copyWithin() Copia elementos del array dentro del array, hacia y desde posiciones
especificadas.

entries() Devuelve un par clave/valor.

every() Comprueba si cada elemento de un array supera una prueba.

fill() Llena los elementos de un array con un valor estático.

filter() Crea un nuevo array con cada elemento de un array que supera una
prueba.

find() Devuelve el valor del primer elemento de un array que supera una
prueba.

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

39

findIndex() Devuelve el índice del primer elemento de un array que supera una
prueba.

findLast() Devuelve el valor del último elemento de un array que ha pasado una
prueba.

findLastIndex() Devuelve el índice del último elemento de un array que ha pasado una
prueba.

flat() Concatena elements de subarray.

flatMap() Mapea todos los elementos del array y crea un nuevo array plano.

forEach() Llama una función para cada elemento del array.

from() Crea un array a partir de un objeto.

includes() Comprueba si un array contiene el elemento especificado.

indexOf() Busca un elemento en el array y devuelve su posición.

isArray() Comprueba si un objeto es un array.

join() Une todos los elementos de un array en una cadena.

keys() Devuelve un Objeto de Iteración del Array, que contiene las claves del
array original.

lastIndexOf() Busque un elemento en el array, empezando por el final, y devolviendo
su posición.

map() Crea un nuevo array con el resultado de llamar a una función para cada
elemento del array.

of() Crea un array a partir de varios argumentos.

pop() Elimina el último elemento de un array y devuelve este elemento.

push() Añade nuevos elementos al final de una matriz y devuelve la nueva
longitud.

reduce() Reduce los valores de un arrebato a un solo valor (de izquierda a
derecha).

reduceRight() Reduce los valores de un array a un solo valor (de derecha a izquierda).

reverse() Invierte el orden de los elementos de un array.

shift() Elimina el primer elemento de un array y devuelve este elemento.

slice() Selecciona una parte de un array y devuelve el nuevo array.

some() Comprueba si alguno de los elementos de un array supera una prueba.

sort() Ordena los elementos de un array.

splice() Añade o elimina elementos del array.

toReversed() Invierte el orden de los elementos del array (a un nuevo array).

toSorted() Ordena los elementos de un array (a un nuevo array).

toSpliced() Añade o elimina elementos del array (a un nuevo array).

toString() Convierte un array en una cadena y devuelve el resultado.

unshift() Añade nuevos elementos al inicio de una matriz y devuelve la nueva
longitud.

valueOf() Devuelve el valor primitivo de un array.

with() Devuelve un nuevo array con elementos actualizados.

<script>

 const nombres = ['Maria','Josep'];

 nombres.push('Carles');

 nombres.forEach((nombre) => {console.log(nombre);});

</script>

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

40

FECHA

El objeto integrado Date es el que nos permite recuperar información de la fecha del sistema y manipularla.

Como ya hemos visto, instanciemos una variable con la cláusula new y como argumento le proporcionamos la

fecha que nos interese:

<script>

 var ahora = new Date(); // fecha actual

 var dia2 = new Date(3600*24*1000); // fecha en milisegundos desde 01/01/1970

 var anoNuevo = new Date("January 1, 2026 00:00:00");//fecha en texto,no recomanable

 var diaAnoNuevo = new Date("2026,1,1"); // fecha en números: AAAA, MM, DD

 var iAnoNuevo = new Date("2026,1,1,0,0,0");//fecha en números: AAAA,MM,DD,HH,MM,SS

</script>

En el caso de las fechas, podemos dividir casi todos los métodos en tres categorías principales:

 Getters: Que nos devuelvan información concreta.

 Setters: Que nos permiten ajustar información concreta.

 Otros: Que nos facilitarán enormemente el trabajo para convertir la información.

Método (argumentos) Descripción

getDate() Devuelve el día del mes (del 1 al 31)

getDay() Devuelve el día de la semana (de 0 a 6)

getFullYear() Devuelve el año

getHours() Devuelve la hora (de 0 a 23)

getMilliseconds() Devuelve los milisegundos (de 0 a 999)

getMinutes() Devuelve los minutos (de 0 a 59)

getMonth() Devuelve el mes (de 0 a 11)

getSeconds() Devuelve los segundos (de 0 a 59)

getTime() Devuelve el número de milisegundos desde medianoche del 1 de enero
de 1970 y una fecha especificada

getTimezoneOffset() Devuelve la diferencia horaria entre la hora UTC y la hora local, en
minutos

getUTCDate() Devuelve el día del mes, según la hora universal (del 1 al 31)

getUTCDay() Devuelve el día de la semana, según la hora universal (de 0 a 6)

getUTCFullYear() Devuelve el año, según el tiempo universal

getUTCHours() Devuelve la hora, según la hora universal (de 0 a 23)

getUTCMilliseconds() Devuelve los milisegundos, según el tiempo universal (de 0 a 999)

getUTCMinutes() Devuelve los minutos, según el tiempo universal (de 0 a 59)

getUTCMonth() Devuelve el mes, según el tiempo universal (de 0 a 11)

getUTCSeconds() Devuelve los segundos, según el tiempo universal (de 0 a 59)

getYear() Depreciado. Utiliza el método getFullYear() en cambio

now() Devuelve el número de milisegundos desde medianoche del 1 de enero
de 1970

parse() Analiza una cadena de fechas y devuelve el número de milisegundos
desde el 1 de enero de 1970

setDate() Establece el día del mes de un objeto de fecha

setFullYear() Establece el año de un objeto de fecha

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

41

setHours() Establece la hora de un objeto de fecha

setMilliseconds() Establece los milisegundos de un objeto de fecha

setMinutes() Establece las actas de un objeto de fecha

setMonth() Establece el mes de un objeto de fecha

setSeconds() Establece los segundos de un objeto de fecha

setTime() Fija una fecha en un número especificado de milisegundos después o
antes del 1 de enero de 1970

setUTCDate() Fija el día del mes de un objeto de fecha, según el tiempo universal

setUTCFullYear() Establece el año de un objeto de fecha, según el tiempo universal

setUTCHours() Fija la hora de un objeto de fecha, según el tiempo universal

setUTCMilliseconds() Establece los milisegundos de un objeto de fecha, según el tiempo
universal

setUTCMinutes() Establece los minutos de un objeto de fecha, según la hora universal

setUTCMonth() Fija el mes de un objeto de fecha, según el tiempo universal

setUTCSeconds() Fija los segundos de un objeto de fecha, según el tiempo universal

setYear() Depreciado. Utiliza el método setFullYear() en cambio

toDateString() Convierte la parte de fecha de un objeto Date en una cadena legible

toGMTString() Depreciado. Utiliza el método toUTCString() en cambio

toISOString() Devuelve la fecha como cadena, utilizando el estándar ISO

toJSON() Devuelve la fecha como cadena, formatada como fecha JSON

toLocaleDateString() Devuelve la parte de fecha de un objeto Date como cadena, utilizando
convenciones locales

toLocaleTimeString() Devuelve la parte de tiempo de un objeto Date como cadena, utilizando
convenciones locales

toLocaleString() Convierte un objeto Date en una cadena, utilizando convenciones de
localización

toString() Convierte un objeto Date en una cadena

toTimeString() Convierte la parte temporal de un objeto Date en una cadena

toUTCString() Convierte un objeto Date en una cadena, según el tiempo universal

UTC() Devuelve el número de milisegundos en una fecha desde medianoche
del 1 de enero de 1970, según la hora UTC

valueOf() Devuelve el valor primitivo de un objeto Date

En siguiente ejemplo se aplican el método toLocaleDateString() para quedarnos sólo con la fecha con un formato

estándar, o los métodos getDay(), getDate(), getMonth() y getFullYear() para recuperar cada una de las

informaciones de la fecha actual para darle el formato que queramos. Como estos métodos vuelven un número,

utilizamos matrices con los nombres personalizados para convertir los números a texto. Finalmente, utilizamos

los métodos getHours(), getMinutes() y getSeconds() para recuperar la información de la hora, con condiciones

ternarias para añadir un 0 inicial si el valor es inferior a 10:

<script>

 const d = new Date();

 console.log(d.toLocaleDateString());

 // 10/1/2026

 const diasSemana = ['Domingo','Lunes', 'Martes', 'Miércoles', 'Jueves',

'Viernes', 'Sábado'];

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

42

 const mesesAno = ['enero', 'febrero', 'marzo', 'abril', 'mayo', 'junio',

'julio', 'agosto', 'septiembre', 'octubre', 'noviembre', 'diciembre'];

 console.log(diasSemana [d.getDay()] + " " + d.getDate() + " de " + mesesAno

[d.getMonth()] + " del " + d.getFullYear());

 // Sábado 10 de enero del 2026

 console.log(`${(d.getHours()<10)? "0"+d.getHours() : d.getHours()} :

${(d.getMinutes()<10)? "0"+d.getMinutes() : d.getMinutes()} :

${(d.getSeconds()<10)? "0"+d.getSeconds() : d.getSeconds()}`);

 // 09 : 08 : 38

</script>

OBJECTES HOST
Son objetos que no forman parte del lenguaje, sino que les proporciona el entorno donde se ejecuta JavaScript;

en nuestro caso, el navegador y el mismo documento HTML.

BOM

El Browser Object Model es la forma que interpreta el JavaScript el navegador como un objeto: de esta manera

le puede aplicar propiedades y métodos. El objeto Window tiene una serie de propiedades como Console,

History, Location, Navigator o Screen, y a su vez estas propiedades tienen sus propios métodos:

Propiedades y métodos WINDOW Descripción

window.addEventListener() Adjunta un gestor de eventos a una ventana

window.alert() o alert() Muestra una caja de alerta con un mensaje y un botón de aceptación

window.confirm() o confirm() Muestra un cuadro de diálogo con un mensaje, un botón de OK y un
botón de Cancel

window.prompt() o prompt() Muestra un cuadro de diálogo que pide al usuario la entrada de texto

window.open() Abre una nueva ventana del navegador o una nueva pestaña,
dependiendo de la configuración del navegador y de los valores de los
parámetros

setInterval() Llama una función a intervalos específicos (en milisegundos).

clearInterval() Borra un temporizador establecido con el método setInterval()

setTimeout() Llama una función después de un número de milisegundos

clearTimeout() Borra un temporizador establecido con el método setTimeout()

window.innerHeight Devuelve la altura del área de contenido de una ventana

window.innerWidth Devuelve la anchura del área de contenido de una ventana

window.outerHeight Devuelve la altura exterior de la ventana del navegador, incluyendo
todos los elementos de la interfaz (como las barras de herramientas o
las barras de desplazamiento).

window.outerWidth Devuelve la anchura exterior de la ventana del navegador, incluyendo
todos los elementos de la interfaz (como las barras de herramientas o
las barras de desplazamiento)

window.scrollBy() Desplaza el documento por el número especificado de píxeles

window.scrollTo() Desplaza el documento hasta las coordenadas especificadas

window.scrollX
window.scrollY
window.pageXOffset
window.pageYOffset

Devuelve los píxeles que un documento ha desplazado desde la esquina
superior izquierda de la ventana

window.print() Abre el cuadro de diálogo de impresión, que permite al usuario
seleccionar opciones de impresión preferidas

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

43

window.localStorage o
localStorage

El objeto localStorage almacena datos sin fecha de caducidad. Los datos
no se eliminan y están disponibles para futuras sesiones.

localStorage.setItem() Te permite desartar pares clave/valor en el navegador

localStorage.getItem() Te permite recuperarel valor de una clave

window.console o console Proporciona acceso a la consola de depuración del navegador

console.log() Envía un mensaje a la consola

console.table() Muestra los datos tabulares como una tabla

window.location o location Contiene información sobre la URL actual

location.hash Establece o devuelve la parte de anclaje (#) de una URL

location.host Establece o devuelve el nombre de anfitrión y el número de puerto de
una URL

location.hostname Establece o devuelve el nombre de host de una URL

location.href Establece o devuelve toda la URL

location.origin Devuelve el protocolo, el nombre de anfitrión y el número de puerto de
una URL

location.pathname Establece o devuelve el nombre del camino de una URL

location.port Establece o devuelve el número de puerto de una URL

location.protocol Establece o devuelve el protocolo de una URL

location.search Establece o devuelve la parte de la cadena de consulta de una URL

window.history o history Contiene las URL visitadas por el usuario (en la ventana del navegador).

history.length Devuelve el número de URLs (páginas) a la lista de historial

history.back() Carga la URL anterior (página) en la lista de historial

history.forward() Carga la siguiente URL (página) en la lista de historial

history.go() Carga una URL específica (página) de la lista de historial

window.navigator o navigator Contiene información sobre el navegador

navigator.language Devuelve el lenguaje del navegador

navigator.userAgent Devuelve la cabecera de usuario-agente enviada por el navegador al
servidor.

window.screen o screen El objeto pantalla contiene información sobre la pantalla del visitante

screen.availHeight Devuelve la altura de la pantalla (excluyendo la barra de tareas)

screen.availWidth Devuelve la anchura de la pantalla (excepto la barra de tareas)

screen.height Devuelve la altura total de la pantalla

screen.width Devuelve la anchura total de la pantalla

<script>

 var elBanner;

 window.addEventListener("load",function(){

 elBanner = setInterval(function(){

 alert("¿Todavía estás aquí?");

 },5000);

 });

 function cerrarBanner () {

 clearInterval(elBanner);

 }

</script>

<p>

 <button type="button" onclick="cerrarBanner();">Parar banner</button>

</p>

DOM

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

44

El Documento Object Model es la forma que interpreta el JavaScript el documento como un objeto: de esta

manera le puede aplicar propiedades y métodos. El DOM da una representación de las etiquetas HTML del

documento como un grupo de nodos y objetos estructurados que tienen propiedades y métodos. Esencialmente,

conecta las páginas web a scripts o lenguajes de programación.

En el siguiente esquema, cada rectángulo representa un nodo DOM y las flechas indican las relaciones entre

nodos. Dentro de cada nodo, se ha incluido su tipo y su contenido.

Documento: nodo raíz del cual

derivan todos los demás nodos

del árbol.

Elemento: representa cada una

de las etiquetas HTML. Se trata

del único nodo que puede

contener atributos y el único del

que pueden derivar otros nodos.

Attributo: se define un nodo de

este tipo para representar cada

uno de los atributos de las

etiquetas HTML, es decir, uno por

cada par atributo="valor".

Texto: nodo que contiene el texto

cerrado por una etiqueta HTML.

Las funciones que proporciona DOM para acceder a un nodo a través de sus nodos padre consisten en acceder

al nodo a raíz de la página y luego a sus nodos hijos y a los nodos hijos de estos hijos y así sucesivamente hasta

el último nodo de la rama terminada por el nodo buscado. Sin embargo, cuando se quiere acceder a un nodo

específico, es mucho más rápido acceder directamente a este nodo y no llegar hasta él descendiendo a través de

todos sus nodos padre.

Por este motivo, no se presentarán las funciones necesarias para el acceso jerárquico de nodos y se muestran

solamente las propiedades y métodos del objeto document que permiten acceder de manera directa a los nodos:

Propiedad Descripción

cookie Devuelve todos los pares de galletas nombre/valor del documento

forms Devuelve una colección de todos <form> los elementos del documento

images Devuelve una colección de todos los elementos del documento

links Devuelve una colección de todos <a> <area> los y elementos del
documento que tienen un atributo href

title Establece o devuelve el título del documento

URL Devuelve la URL completa del documento HTML

Método (argumentos) Descripción

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

45

addEventListener() Adjunta un gestor de eventos al documento

getElementById() Devuelve el elemento que tiene el atributo ID con el valor especificado

getElementsByClassName() Devuelve un HTMLCollection que contiene todos los elementos con el
nombre de clase especificado

getElementsByName() Devuelve una NodeList activa que contiene todos los elementos con el
nombre especificado

getElementsByTagName() Devuelve un HTMLCollection que contiene todos los elementos con el
nombre de etiqueta especificado

hasFocus() Devuelve un valor booleano que indica si el documento tiene foco

querySelector() Devuelve el primer elemento que coincide con un selector CSS
especificado del documento

querySelectorAll() Devuelve una NodeList estática que contiene todos los elementos que
coinciden con un(s) selector(s) CSS especificado(s) del documento

removeEventListener() Elimina un gestor de eventos del documento (que se ha adjuntado con
el método addEventListener())

write() Escribe expresiones HTML o código JavaScript en un documento

writeln() Igual que write(), pero añade un carácter de nueva línea después de
cada instrucción

<script>

 window.addEventListener("load",function(){

 const elBoton = document.getElementById("btnBoton");

 elBoton.addEventListener("click",function(){

 alert("Has pulsado el botón");

 });

 });

</script>

<p>

 <button type="button" id="btnBoton">Botón</button>

</p>

Una vez tenemos seleccionado uno o un conjunto de nodos, podemos aplicar nuevas propiedades y métodos:

Propiedad Descripción

length Obtiene el número de nodos seleccionados

classList Devuelve el(s) nombre(s) de clase de un elemento

clientHeight Devuelve la altura de un elemento, incluyendo el relleno

clientLeft Devuelve la anchura del borde izquierdo de un elemento

clientTop Devuelve la anchura del borde superior de un elemento

clientWidth Devuelve la anchura de un elemento, incluyendo el relleno

innerHTML Establece o devuelve el contenido de un elemento

innerText Establece o devuelve el contenido textual de un nodo y sus
descendientes

scrollHeight Devuelve toda la altura de un elemento, incluyendo el relleno

scrollLeft Establece o devuelve el número de píxeles en los que el contenido de un
elemento está desplazado horizontalmente

scrollTop Establece o devuelve el número de píxeles en los que el contenido de un
elemento se desplaza verticalmente

scrollWidth Devuelve toda la anchura de un elemento, incluyendo el relleno

style Establece o devuelve el valor del atributo de estilo de un elemento

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

46

textContent Establece o devuelve el contenido textual de un nodo y sus
descendientes

(nombreAtributo) Cualquier atributo de una etiqueta HTML se convierte en una propiedad

Método (argumentos) Descripción

addEventListener() Adjunta un gestor de eventos a un elemento

checkValidity() Comprueba si el elemento tiene restricciones y si las cumple. Si el
elemento no cumple sus restricciones, devuelve falso.

hasAttribute() Devuelve cierto si un elemento tiene un atributo dado

hasAttributes() Devuelve cierto si un elemento tiene cualquier atributo

hasChildNodes() Devuelve cierto si un elemento tiene nodos hijos

scrollIntoView() Desplaza el elemento al área visible de la ventana del navegador

setAttribute() Establece o cambia el valor de un atributo

setAttributeNode() Establece o cambia un nodo de atributo

reset() Restablece un formulario a su estado inicial

submit() Envía los datos de un formulario

preventDefault() Cancela el evento si es cancelable, es decir, que la acción por defecto
que pertenece al evento no se producirá

stopPropagation() Impide que se llame la propagación del mismo acontecimiento

Un caso especial es la propiedad classList que hace referencia a las clases CSS que se aplican a una etiqueta:

como esto implica manipular la estética del nodo, tenemos disponibles más métodos y propiedades especiales

sólo para manipular los nombres de las clases:

Propiedades y métodos de classList Descripción

add() Añade uno o más nombres a la lista

contains() Regresa verdadero si la lista contiene una clase

forEach() Ejecuta una función de llamada para cada nombre de la lista

length Devuelve el número de nombres a la lista

remove() Elimina uno o más nombres de la lista

replace() Sustituye un nombre en la lista

toggle() Cambia entre fichas en la lista

value Devuelve la lista de nombres como una cadena

values() Devuelve un iterador con los valores de la lista

En el siguiente ejemplo añadimos un gestor de evento al objeto window para esperar a que se cargue el

documento y que tengamos disponibles los botones. A continuación se seleccionan todos por su nombre de clase

CSS, y a cada uno añadimos un gestor de evento para detectar cuando se pegan para mostrar una alerta

personalizada con el contenido del botón:

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

47

<script>

 window.addEventListener("load",function(){

 const elBoton = document.querySelectorAll(".elBoton");

 elBoton.forEach(function(b){

 b.addEventListener("click",function(){

 alert("Has pulsado el botón " + b.textContent);

 });

 });

 });

</script>

<p>

 <button type="button" class="elBoton">Botón 1</button>

 <button type="button" class="elBoton">Botón 2</button>

 <button type="button" class="elBoton">Botón 3</button>

</p>

Con el método addEventListener() ya no hay que añadir los eventos como atributo s de las etiquetas

HTML, por lo tanto el código queda mucho más limpio .

Este método necesita como primer argumento el acontecimiento a escuchar: el nombre del acontecimiento es

el mismo que el del atributo HTML pero sin el "on" inicial:

Nombre del evento como argumento Definición

blur Cuando un elemento de formulario pierde el foco

change Cuando el valor de un campo de formulario es modificado

click Cuando se hace clic con el botón del ratón

contextmenu Cuando se hace clic con el botón alternativo del ratón

dblclick Cuando se hace doble clic en un objeto

focus Cuando un elemento de formulario adquiere el foco

input Cuando se está modificando un campo de formulario

keydown Cuando se presiona una tecla

keypress Cuando se presiona una tecla

keyup Cuando se deja de presionar una tecla

load Cuando una página o imagen acaba de cargarse

mousedown Cuando se pite el botón del ratón

mousemove Cuando se mueve el ratón

mouseout Cuando el cursor del ratón sale del elemento

mouseover Cuando el cursor del ratón se pone encima

mouseup Cuando se deja ir el botón del ratón

reset Cuando se pite el botón de reset de un formulario

resize Cuando se modifica el tamaño de una ventana

select Cuando se selecciona texto de un campo de formulario

submit Cuando se pite el botón sumido de un formulario

wheel Cuando la rueda del ratón sube o baja sobre un elemento

En el siguiente ejemplo se utilizan diferentes métodos para controlar el envío de un formulario validándolo con

JavaScript y no por el navegador:

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

48

<script>

 window.addEventListener("load",function(){

 const forms = document.querySelectorAll('.para-validar');

 forms.forEach(form => {

 form.addEventListener("submit", event => {

 event.preventDefault();

 event.stopPropagation();

 if (form.checkValidity()) {

 form.submit();

 } else {

 alert("Verifica los campos del formulario");

 }

 });

 });

 });

</script>

<form class="para-validar" novalidate>

 <p>

 <label for="idNom">Nombre</label>

 <input type="text" id="idNombre" required name="elNombre">

 </p>

 <p>

 <button type="submit">Enviar</button>

 </p>

</form>

A partir de ahora, con la manipulación del DOM y acceso a los diferentes nodos del documento, podemos

abandonar los métodos del objeto window como alert(), confirm() y prompt() para emplear

elementos propios del lenguaje HTML como párrafos, divisores, botones y entradas de formulario para

interactuar con los visitantes y mejorar la experiencia de usuario.

En el siguiente ejemplo, se emplea un formulario para que el visitante introduzca los datos, se manipula la

propiedad "value" y "checked" para recoger la información y se muestra la respuesta de forma asíncrona en un

contenedor:

<script>

 window.addEventListener("load",function(){

 const formAcceso = document.getElementById('formAcceso');

 const mensajeAcceso = document.getElementById('mensajeAcceso');

 formAcceso.addEventListener("submit", event => {

 event.preventDefault();

 event.stopPropagation();

 mensajeAcceso.textContent = "";

 let edad = document.getElementById('edad').value;

 let edadNum = parseInt(edad);

 let politicaLegal = document.getElementById('politicaLegal').checked;

 console.log (edad, edadNum, politicaLegal);

 if (politicaLegal && !isNaN(edadNum) && edadNum >= 18) {

 formAcceso.submit();

 } else if (isNaN(edadNum)) {

 mensajeAcceso.textContent = "Hay que introducir la edad.";

 } else if (edadNum < 18) {

 mensajeAcceso.textContent = "No se permite el acceso a menores de edad.";

 } else if (!politicaLegal) {

 mensajeAcceso.textContent = " Hay que aceptar la política de privacidad.";

 } else {

 mensajeAcceso.textContent = "Llena los campos del formulario.";

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

49

 }

 });

 });

</script>

<form id="formAcceso">

 <p>

 <label for="edad">Introduce tu edad:</label>

 <input type="text" id="edad" name="edad">

 </p>

 <p>

 <input type="checkbox" id="politicaLegal" name="politicaLegal">

 <label for="politicaLegal">Acepto la política de privacitat</label>

 </p>

 <p>

 <button type="submit">Validar</button>

 </p>

</form>

<p id="mensajeAcceso"></p>

OBJETOS LITERALES
Un objeto literal es un conjunto de claves y valores. Cada clave es un nombre, y cada valor puede ser lo que

quieras: un número, un texto, otro objeto, una función... Es como decir: "Tengo algo que tiene estas

características y puede hacer estas acciones".

Un objeto en JavaScript es un contenedor flexible que agrupa datos y comportamientos bajo un

mismo nombre.

EL OBJETO es una entidad de la vidal real que se traslada al paradigma informático: tienen ATRIBUTOS como

características que lo pueden definir y tienen MÉTODOS que son acciones que pueden realizar los objetos sobre

sus propios atributos o sobre los de otros objetos. Por ejemplo: el objeto coche tiene propiedades: "color",

"marca", "modelo", "motor"; también tiene funciones: arrancar() o frenar().

Una forma rápida de crear un objeto es instanciar una variable con las llaves “{}” y añadir dentro las claves de

datos que necesitamos con los valores correspondientes empleando el operador dos puntos “:” y separando las

claves con coma “,”. Los métodos se definen como una clave más pero con una función anónima como valor.

Una vez declarado y instanciado el objeto, podemos hacerle referencia por el nombre y utilizar las propiedades

y los métodos con el operador del punto ”.”:

<script>

 const coche = {

 color:'negro',

 marca:'js',

 model:'object',

 motor:'híbrido',

 arrancar: function () {console.log("arrancar");},

 frenar: function () {console.log("frenar");}

 }

 coche.marca = "JavaScript";

 console.log(coche.marca);

 coche.arrancar();

 coche.frenar();

</script>

Los valores que podemos almacenar pueden ser de cualquier de los tipos vistos con las variables.

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

50

Las CLASES son plantillas que definen qué atributos y métodos deben tener todos los objetos creados a partir de

esta clase; no asigna valores, sólo los tipos de los mismos. Las clases también pueden tener herencias: de esta

forma las clases principales son Superclases, y las subordinadas son inferiores y se llaman Subclases.

Utilizamos class para declarar un nuevo objeto (los objetos empiezan siempre con mayúscula y en singular), y

extends si esta es una subclase de una clase previamente declarada.

La instanciación es la acción de crear un objeto a partir de una clase dentro de una variable y lo hacemos con

new. En el siguiente ejemplo simularemos una fábrica de bollería y pasteles:

<script>

 class Brioixeria {

 // Atributos con los valores por defecto para definir el tipo:

 nom = '';

 sabor = '';

 pes = 0;

 color = '';

 racions = 0;

 }

 class Pastis extends Brioixeria {

 // Atributos con los valores por defecto para definir el tipo:
 // Como este objeto depende de una superclase, los atributos originales no hay que llamarlos

 espelmes = 0;

 }

 const article1 = new Brioixeria();

 article1.nom = 'Croissant';

 article1.sabor = 'mantequilla';

 article1.pes = 0.15;

 article1.color = 'beige';

 article1.racions = 1;

 document.writeln(`<dl>

 <dt>Nombre:</dt><dd>${article1.nom}</dd>

 <dt>Sabor:</dt><dd>${article1.sabor}</dd>

 <dt>Peso:</dt><dd>${article1.pes} Kg</dd>

 <dt>Color:</dt><dd>${article1.color}</dd>

 <dt>Raciones</dt><dd>${article1.racions}</dd>

 </dl>`);

 const article2 = new Pastis();

 article2.nom = 'Pastel de manzana';

 article2.sabor = 'manzana y caramelo';

 article2.pes = 1.5;

 article2.color = 'marrón';

 article2.racions = 6;

 article2.espelmes = 12;

 document.writeln(`<dl>

 <dt>Nombre:</dt><dd>${article2.nom}</dd>

 <dt>Sabor:</dt><dd>${article2.sabor}</dd>

 <dt>Peso:</dt><dd>${article2.pes} Kg</dd>

 <dt>Color:</dt><dd>${article2.color}</dd>

 <dt>Raciones</dt><dd>${article2.racions}</dd>

 <dt>Velas</dt><dd>${article2.espelmes}</dd>

 </dl>`);

</script>

En este ejemplo tenemos una Superclase Brioixeria que tiene una serie de atributos asignados. Y de esta se crea

una Subclase Pastis que hereda sus atributos, pero se pueden añadir nuevos atributos para personalizar el nuevo

objeto.

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

51

Si el objeto tiene muchas propiedades asignadas, instanciar cada una de ellas individualmente con el operador

del punto es muy pesado. La opción para agilizar la asignación inicial de valores es crear un constructor o función

constructora: dentro de la clase, utilizamos constructor como nombre de método genérico que permite añadir

valores a los atributos en el mismo momento de la instanciación. Utilizamos this. en las propiedades para centrar

el ámbito -scope -dentro del objeto y así llamamos sólo a sus atributos, pero si el objeto es una Subclase y hereda

las propietas de su Superclase, utilizamos super. si hacemos referencia a elementos heredados:

<script>

 class Brioixeria {

 nom = '';

 sabor = '';

 pes = 0;

 color = '';

 racions = 0;

 constructor (nom, sabor, pes, color, racions) {

 this.nom = nom;

 this.sabor = sabor;

 this.pes = pes;

 this.color = color;

 this.racions = racions;

 }

 }

 class Pastis extends Brioixeria {

 espelmes = 0;

 constructor (nom, sabor, pes, color, racions, espelmes) {

 super (nom, sabor, pes, color, racions);

 this.espelmes = espelmes;

 }

 }

 const article1 = new Brioixeria('Croissant', 'mantequilla', 0.15, 'beige', 1);

 document.writeln(`<dl>

 <dt>Nombre:</dt><dd>${article1.nom}</dd>

 <dt>Sabor:</dt><dd>${article1.sabor}</dd>

 <dt>Peso:</dt><dd>${article1.pes} Kg</dd>

 <dt>Color:</dt><dd>${article1.color}</dd>

 <dt>Raciones</dt><dd>${article1.racions}</dd>

 </dl>`);

 const article2 = new Pastis('Pastel de manzana', ' manzana y caramelo', 1.5,

'marrón', 6, 12);

 document.writeln(`<dl>

 <dt>Nombre:</dt><dd>${article2.nom}</dd>

 <dt>Sabor:</dt><dd>${article2.sabor}</dd>

 <dt>Peso:</dt><dd>${article2.pes} Kg</dd>

 <dt>Color:</dt><dd>${article2.color}</dd>

 <dt>Raciones</dt><dd>${article2.racions}</dd>

 <dt>Velas</dt><dd>${article2.espelmes}</dd>

 </dl>`);

Además del método por defecto de constructor, podemos añadir métodos o acciones personalizadas a nuestros

objetos declarando funciones dentro del propio objeto y modificándolo en las Subclases:

<script>

 class Brioixeria {

 nom = '';

 sabor = '';

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

52

 pes = 0;

 color = '';

 racions = 0;

 constructor (nom, sabor, pes, color, racions) {

 this.nom = nom;

 this.sabor = sabor;

 this.pes = pes;

 this.color = color;

 this.racions = racions;

 }

 aTexto () {

 return `Soy un ${this.nom} de sabor de ${this.sabor} con un peso de

${this.pes} Kg, de color ${this.color} para ${this.racions} raciones`;

 }

 }

 class Pastis extends Brioixeria {

 espelmes = 0;

 constructor (nom, sabor, pes, color, racions, espelmes) {

 super (nom, sabor, pes, color, racions);

 this.espelmes = espelmes;

 }

 aTexto () {

 return `Soy un ${this.nom} de sabor de ${this.sabor} con un peso de

${this.pes} Kg, de color ${this.color} para ${this.racions} raciones con

${this.espelmes} velas`;

 }

 }

 const article1 = new Brioixeria('Croissant', 'mantequilla', 0.15, 'beige', 1);

 document.writeln("<p>" + article1.aTexto() + "</p>");

 const article2 = new Pastis('Pastel de manzana', ' manzana y caramelo', 1.5,

'marrón', 6, 12);

 document.writeln("<p>" + article2.aTexto() + "</p>");

</script>

Aunque las propiedades se pueden recuperar y volver a instanciarse en cualquier momento porque JavaScript es

un lenguaje que da mucha flexibilidad, en otros lenguajes orientados a objetos, las propiedades se definen como

privadas y no se pueden utilizar tan libremente desde fuera de la propia definición del objeto, de ahí que se

definan métodos getters y setters para poder manipularlas:

GETTERS

Los Getters o micrométodos son métodos para poder leer los valores de los atributos, necesarios en otros

lenguajes orientados a objetos porque son privados y no se pueden consultar desde fuera del objeto. Como el

resto de métodos, son heredables y sólo hay que definirlos una vez en la Superclase con el nombre que

queramos. En nuestro ejemplo:

 getNom () {

 return this.nom;

 }

 getSabor () {

 return this.sabor;

 }

 getPes () {

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

53

 return this.pes;

 }

 getColor() {

 return this.color;

 }

 getRacions () {

 return this.racions;

 }

Y en la Subclase:

 getEspelmes () {

 return this.espelmes;

 }

SETTERS

Los Setters o micrométodos son métodos para poder modificar los valores de los atributos, necesarios en otros

lenguajes orientados a objetos porque son privados y no se pueden modificar desde fuera del objeto. Como el

resto de métodos, son heredables y sólo hay que definirlos una vez en la Superclase con el nombre que

queramos. En nuestro ejemplo:

 setNom (v) {

 this.nom = v;

 }

 setSabor (v) {

 this.sabor = v;

 }

 setPes (v) {

 this.pes = v;

 }

 setColor(v) {

 this.color = v;

 }

 setRacions (v) {

 this.racions = v;

 }

Y en la Subclase:

 setEspelmes (v) {

 this.espelmes = v;

 }

La incorporación de estos micrométodos haría modificar los otros métodos para incorporarlos. En nuestro

ejemplo, modificaríamos el método para muestra la información en la Subclase para leer los atributos. Al ser

atributos de la Superclase, utilizo super y los getters para leer la información; sólo se usa el this para los atributos

propios:

 aTexto () {

 return ` Soy un pastel con el nombre ${super.getNom()} de sabor de

${super.getSabor()} con un peso de ${super.getPes()} Kg, de color

${super.getColor()} para ${super.getRacions()} raciones con ${this.espelmes}

velas`;

 }

Ahora, todo junto, el ejemplo queda:

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

54

<script>

 class Brioixeria {

 nom = '';

 sabor = '';

 pes = 0;

 color = '';

 racions = 0;

 constructor (nom, sabor, pes, color, racions) {

 this.nom = nom;

 this.sabor = sabor;

 this.pes = pes;

 this.color = color;

 this.racions = racions;

 }

 getNom () {

 return this.nom;

 }

 getSabor () {

 return this.sabor;

 }

 getPes () {

 return this.pes;

 }

 getColor() {

 return this.color;

 }

 getRacions () {

 return this.racions;

 }

 setNom (v) {

 this.nom = v;

 }

 setSabor (v) {

 this.sabor = v;

 }

 setPes (v) {

 this.pes = v;

 }

 setColor(v) {

 this.color = v;

 }

 setRacions (v) {

 this.racions = v;

 }

 aTexto () {

 return `Soy un ${this.nom} de sabor de ${this.sabor} con un peso de

${this.pes} Kg, de color ${this.color} para ${this.racions} raciones`;

 }

 }

 class Pastis extends Brioixeria {

 espelmes = 0;

 constructor (nom, sabor, pes, color, racions, espelmes) {

 super (nom, sabor, pes, color, racions);

 this.espelmes = espelmes;

 }

 getEspelmes () {

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

55

 return this.espelmes;

 }

 setEspelmes (v) {

 this.espelmes = v;

 }

 aTexto () {

 return ` Soy un pastel con el nombre ${super.getNom()} de sabor de

 ${super.getSabor()} con un peso de ${super.getPes()} Kg, de color

${super.getColor()} para ${super.getRacions()} raciones

con ${this.espelmes} velas`;

 }

 }

 const article1 = new Brioixeria(

 'Croissant', 'mantequilla', 0.15, 'beige', 1

);

 document.writeln("<p>" + article1.aTexto() + "</p>");

 const article2 = new Pastis(

 'Pastel de manzana', ' manzana y caramelo', 1.5, 'marrón', 6, 12

);

 document.writeln("<p>" + article2.aTexto() + "</p>");

</script>

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

56

JQUERY
jQuery es una librería de JavaScript creada para simplificar tareas habituales en el desarrollo web. Nació con el

objetivo de hacer el código más corto, más legible y más compatible entre navegadores en una época en la que

cada navegador interpretaba JavaScript de manera diferente. Su filosofía se resume en el eslogan "Write less, do

more" –Escribe menos, haz más-.

Con jQuery puedes seleccionar elementos del DOM con una sintaxis muy compacta, manipular contenido HTML,

manipular clases y estilos CSS, gestionar eventos, crear animaciones y hacer peticiones AJAX sin tener que

preocuparte por los detalles técnicos de cada navegador. Su función principal, $(), actúa como una puerta de

entrada rápida para acceder y modificar elementos de la página.

Aunque hoy en día JavaScript moderno (ES6+) y la API del DOM han mejorado mucho y han reducido la necesidad

de jQuery, todavía se encuentra en muchos proyectos existentes y es útil para mantener o modernizar

aplicaciones antiguas. También sigue siendo una herramienta sencilla para quien empieza y quiere manipular el

DOM de manera intuitiva.

En el capítulo dedicado al DOM, hemos visto algunos métodos y propiedades (no todos) de JavaScript para

manipularlo, y hemos constatado que hay una mezcla de propiedades, métodos y métodos de propiedades.

jQuery simplifica la sintaxis definiendo todo como métodos y variando sólo los argumentos de cada uno.

Además, gracias al amplio catálogo de plugins o extensiones desarrolladas con esta librería, es muy fácil

implementar nuevas funcionalidades o conectarlas entre ellas sin que estudiar su sintaxis o cómo hacerlas

compatibles entre ellas.

jQuery no sustituye al JavaScript: lo complementa para facilitar la manipulación de DOM con una

sintaxis compacta basada en métodos que resumen largas expresiones.

INSTALACIÓN

Al ser una librería como Bootstrap o FontAwesome, no es necesario instalar ningún software especial: solo hay

que enlazar con el archivo base que nos interese, disponibles en https://jquery.com/download/

 Archivo minificado con todas las funcionalidades: https://code.jquery.com/jquery-3.7.1.min.js

 Archivo sourcemap -fichero que sirven para relacionar el código minificado con el código original legible

y que se pueda leer con claridad el código en las herramientas de depuración del navegador-

complementario al minificado: https://code.jquery.com/jquery-3.7.1.min.map

 Archivo sin minificar –no recomendado en producción por su peso- para el desarrollo:

https://code.jquery.com/jquery-3.7.1.js

 Archivo minificado simplificado –slim- sin efectos visuales ni ajax: https://code.jquery.com/jquery-

3.7.1.slim.min.js

 Archivo sourcemap de la versión simplificada: https://code.jquery.com/jquery-3.7.1.slim.min.map

 Archivo sin minificar simplificado: https://code.jquery.com/jquery-3.7.1.slim.js

Este archivo normalmente lo descargaremos y lo guardaremos en la carpeta del proyecto, con el resto de

recursos. También tenemos la posibilidad de utilizar un CDN (content delivery network) o red de entrega de

contenidos donde hay copias disponibles de los archivos.

https://jquery.com/download/
https://code.jquery.com/jquery-3.7.1.min.js
https://code.jquery.com/jquery-3.7.1.min.map
https://code.jquery.com/jquery-3.7.1.js
https://code.jquery.com/jquery-3.7.1.slim.min.js
https://code.jquery.com/jquery-3.7.1.slim.min.js
https://code.jquery.com/jquery-3.7.1.slim.min.map
https://code.jquery.com/jquery-3.7.1.slim.js

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

57

Una vez descargado o con el enlace CDN que nos interese, lo vincularemos con una etiqueta <script> al

<head> de nuestro documento, aunque normalmente se pone al final del <body>, con el resto de scripts, para

no enlentecer la carga del documento:

<script src="jquery-3.7.1.min.js"></script>

Es importante que enlacemos a la librería jQuery antes del resto de scripts que utilicen su sintaxis

para evitar errores de lectura.

INICIALIZACIÓN

Si jQuery está pensado para manipular el DOM, antes de empezar a utilizarlo debemos asegurarnos de que todo

el documento esté completamente cargado, por lo tanto, usaremos una expresión similar al

window.addEventListener("load",function(){}); para esperar a ejecutar el código al que los

nodos estén disponibles:

<script src="jquery-3.7.1.min.js"></script>

<script>

 $(document).ready(function(){

 ...

 });

</script>

Aunque hay una versión más cómoda y rápida:

<script src="jquery-3.7.1.min.js"></script>

<script>

 $(function(){

 ...

 });

</script>

A partir de ahora, todas nuestras sentencias irán dentro de las llaves de esta función anónima que

se invocará una vez el documento esté cargado.

SELECTORES

A partir de ahora, cada vez que implementamos una nueva sentencia, la estructura será clara: selector.método();

Para hacer el selector necesitamos la expresión propia del jQuery $("selector"), donde el selector puede

ser cualquiera de los posibles selectores que nos da el CSS. Esta expresión es similar al:

document.querySelectorAll("selector");

Aparte de simplificar, jQuery también hará que cualquier método que apliquemos al selector se aplique a todos

los elementos, es decir, el mismo jQuery hará el bucle forEach() por nosotros:

<script src="jquery-3.7.1.min.js"></script>

<script>

 $(function(){

 $('.oculto').hide();

 });

</script>

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

58

MÉTODOS

El listado de métodos que muestra la documentación de jQuery en https://api.jquery.com/ es muy amplio, por

eso recomiendo otra webapp que he desarrollado como guía visual, donde los métodos aparecen organizados

por temática: https://onaweb.cat/jquery/

Al pulsar cada uno de los métodos, se abre una ventana con la documentación original en inglés, donde no sólo

se explican los argumentos necesarios, sino también hay ejemplos de uso.

Cabe mencionar que el JavaScript tiene muchas propiedades que pueden ser de lectura o escritura si están a la

derecha o a la izquierda del operador de asignación. En jQuery también están definidos como métodos, pero

estos serán de lectura –getters- si sólo tienen un argumento, o de escritura –setters- si tienen dos argumentos.

Si alguno de los argumentos es de tipo función, como los handler de los métodos de eventos, será una función

anónima donde podremos añadir el código a ejecutar en el caso de que el método se ejecute. Dentro de estas

funciones anónimas utilizaremos la cláusula this para hacer referencia al objeto con el que se está interactuando

en ese momento, así que el uso de la función anónima o función de flecha podría dar errores en la interpretación

del this.

Otra opción que tiene el JavaScript y también el jQuery es la opción de concatenar diferentes métodos con el

punto: $("selector").método1().método2().método3()...;

Algunos de estos métodos tienen la cláusula jQuery o $ en lugar de un selector porque no es necesario aplicar

a un nodo en concreto: se pueden emplear como una función.

En el siguiente ejemplo hay tres botones con la misma clase CSS pero diferentes textos dentro, y un contenedor

identificado vacío. A continuación está el enlace a la liberia jQuery y su inicialización, donde hay un selector para

los botones por su clase y un método de evento con dos argumentos: el evento "click" y la función anónima con

dos sentencias:

<p>

 <button type="button" class="btnBoton">Botón 1</button>

 <button type="button" class="btnBoton">Botón 2</button>

 <button type="button" class="btnBoton">Botón 3</button>

</p>

<div id="salida"></div>

<script src="jquery-3.7.1.min.js"></script>

<script>

 $(function(){

 $('.btnBoton').on('click',function(){

 let textoBoton = $(this).text();

 $('#salida').text(textoBoton)

 });

 });

</script>

En la primera sentencia se declara la variable local "textoBoton" y se instancia con el selector $(this) que

equivale al botón exacto sobre el que se ha pulsado con el método text() que equivale a la propiedad

innerText o textContent; al no tener ningún argumento, este método funciona como lectura –getter-.

https://api.jquery.com/
https://onaweb.cat/jquery/

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

59

En la siguiente sentencia volvemos a empezar con un selector, en este caso el contenedor con el identificador, y

volvemos a aplicar el método text() que, en esta ocasión, sí tiene un argumento, por tanto, funciona como

escritura –setter- y muestra el contenido de la variable "textoBoton".

SELECTORES
En esta categoría tenemos un resumen de las diferentes formas que tenemos para seleccionar nodos del DOM,

la mayoría heredados del lenguaje CSS.

ATRIBUTOS / CSS
En esta categoría tenemos los métodos para manipular (leer o escribir) los atributos de las etiquetas HTML y las

propiedades CSS, así como las clases CSS que se aplican. También se incluyen métodos para manipular las

dimensiones, la posición en la ventana y los atributos data- de las etiquetas HTML.

Este atributo "data" merece una subcategoría aparte porque es una forma muy habitual de almacenar

información propia para esta etiqueta (como una variable local) para luego recuperarla con JavaScript y, en

nuestro caso, con jQuery.

Siguiendo el ejemplo inicial del capítulo, se han añadido atributos data-info a los botones para poder

personalizar el texto a mostrar. Por lo tanto, cada vez que pulsamos un botón debemos recuperar la información

de ese mismo botón, y lo hacemos con el método data('info') donde "info" es el argumento para

especificar cuál de todos los atributos data- que puede tener una etiqueta queremos seleccionar. Como no hay

un segundo argumento de valor, significa que es de lectura –getter-:

<p>

 <button type="button" class="btnBoton" data-info="Información 1">Botón 1</button>

 <button type="button" class="btnBoton" data-info="Información 2">Botón 2</button>

 <button type="button" class="btnBoton" data-info="Información 3">Botón 3</button>

</p>

<div id="salida"></div>

<script src=" jquery-3.7.1.min.js "></script>

<script>

 $(function(){

 $('.btnBoton').on('click',function(){

 let textoBoton = $(this).data('info');

 $('#salida').text(textoBoton)

 });

 });

</script>

MANIPULACIÓN
Son métodos para manipular el contenido o lo que lo rodea, duplicar o incluso eliminar el nodo seleccionado. En

el ejemplo anterior se ve el uso del método text() para manipular el texto contenido en un nodo.

ATRAVESANDO
Este conjunto de métodos nos permite movernos por la estructura de nodos del documento. Siempre

necesitamos empezar desde un nodo origen, el seleccionado, y a partir de estos nos podemos mover a nodos

inferiores –los hijos-, superiores –los padres- o los que están al mismo nivel –los hermanos-.

EVENTOS
Este conjunto de métodos nos permiten detectar las interacciones del usuario con el ratón, el teclado o

relacionados con los formularios.

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

60

En el siguiente ejemplo se modifica un ejemplo anterior para utilizar la sintaxis jQuery: en este caso el selector

del formulario (o formularios) ahora es más sencillo, no es necesario utilizar ningún bucle pero si queremos seguir

utilizando métodos originales del JavaScript -.checkValidity() y .submit()- y que el jQuery no se

confunda, añadimos el método .get(0) para indicar que en el array de posibilidades del jQuery –para jQuery

todo conjunto de elementos es un array, aunque sea de un único elemento-, nos quedamos con el primer nodo

–el formulario que estamos manipulando-:

<form class="para-validar" novalidate>

 <p>

 <label for="idNombre">Nombre</label>

 <input type="text" id="idNombre" required name="elNombre">

 </p>

 <p>

 <button type="submit">Enviar</button>

 </p>

</form>

<script src=" jquery-3.7.1.min.js "></script>

<script>

 $(function(){

 $('.para-validar').on("submit", function(event) {

 event.preventDefault();

 event.stopPropagation();

 if ($(this).get(0).checkValidity()) {

 $(this).get(0).submit();

 } else {

 alert("Verifica los campos del formulario");

 }

 });

 });

</script>

EFECTOS
Aquí tenemos métodos para efectos visuales; no son efectos muy complejos, pero para hacer efectos sencillos

para mejorar la experiencia de usuario pueden ser un buen punto de partida.

Siguiendo el ejemplo anterior, no emplearemos un alert() sino un mensaje en pantalla ya definido en el

código HTML:

<form class="para-validar" novalidate>

 <p>

 <label for="idNombre">Nombre</label>

 <input type="text" id="idNombre" required name="elNombre">

 </p>

 <p>

 <button type="submit">Enviar</button>

 </p>

</form>

<div class="aviso">Verifica los campos del formulario</div>

<script src=" jquery-3.7.1.min.js "></script>

<script>

 $(function(){

 $('.aviso').hide();

 $('.para-validar').on("submit", function(event) {

 event.preventDefault();

 event.stopPropagation();

 if ($(this).get(0).checkValidity()) {

 $(this).get(0).submit();

 } else {

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

61

 $(this).next('.aviso').slideDown();

 }

 });

 });

</script>

En este ejemplo, al cargar el documento ocultamos el nodo con el mensaje, y cuando se valida y da un error de

validación, desde el formulario nos movemos al siguiente nodo (el del mensaje) para desplegarlo.

AJAX
AJAX es una técnica de JavaScript que permite comunicarse con el servidor sin recargar toda la página. El nombre

proviene de Asynchronous JavaScript and XML, aunque hoy en día no es necesario utilizar XML: también

funciona con JSON, texto o cualquier otro formato.

La asincronía es la capacidad de ejecutar tareas sin bloquear la aplicación, permitiendo que otras

operaciones continúen mientras una acción lenta se resuelve en segundo plano.

La idea central es sencilla: la página envía una petición al servidor "en segundo plano", recibe la respuesta y

actualiza sólo la parte necesaria del documento. Esto hace que las aplicaciones web sean más rápidas, fluidas e

interactivas, porque el usuario no ve ningún corte ni recarga completa.

Con AJAX puedes, por ejemplo, cargar datos nuevos, enviar formularios, actualizar listas o validar información

sin salir de la página. Inicialmente se usaba el objeto XMLHttpRequest, pero hoy es muy habitual utilizar la

API fetch, que es más moderna y clara.

En resumen, AJAX es el mecanismo que permite que muchas webs funcionen de manera dinámica y reactiva,

haciendo que la comunicación con el servidor sea transparente para el usuario.

jQuery incluye su implementación con el método ajax() y el resto de métodos auxiliares para facilitar la

gestión de datos y respuestas.

<div id="galeria"></div>

<script src=" jquery-3.7.1.min.js "></script>

<script>

 $(function(){

 $.getJSON("https://picsum.photos/v2/list", function(data) {

 let items = [];

 $.each(data, function(key, val) {

 items.push(`<div><img src="${val.download_url}" alt="foto

 ${val.id}" title="${val.author}"></div>`);

 });

 $("#galeria").append(items.join(''));

 });

 });

</script>

En el anterior ejemplo se ve en uso el método $.getJSON() para conectar con un servidor que da un

documento .json con una lista de 30 imágenes; una vez establecida la conexión, leído el archivo y descodificado

en formato array, lo podemos recorrer para almacenar en el array local "items" los nuevos nodos de HTML con

imágenes. Los valores de los atributos de las imágenes se establecen a partir de la información del JSON

(JavaScript Object Notation). Una vez recorrido, se muestra el contenido dentro del contenedor con el

identificador "galeria".

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

62

NÚCLEAR
Aquí tenemos un "cajón desastre" donde tenemos el resto de métodos que no pertenecen al resto de categorías.

Muchos métodos son ayudas y auxiliares, como el método $.each() –que hemos visto en el ejemplo anterior-

para hacer un bucle a los elementos de un array o el método .get() –que ya hemos visto en ejemplos

anteriores- para seleccionar el nodo nativo de JavaScript de un array de nodos del jQuery.

PLUGINS

Un plugin de JavaScript es un pequeño módulo de código pensado para añadir funcionalidades concretas a una

página o aplicación sin tener que reescribirlas desde cero. Actúa como una extensión reutilizable: encapsula una

característica (por ejemplo, un carrusel, un selector de fechas o un sistema de pestañas) y permite integrarla

fácilmente en diferentes proyectos mediante una API sencilla.

Pero depende del autor cómo están desarrollados y la sintaxis utilizada, y eso implica que hay que leer muy bien

la documentación y estudiar su funcionamiento para entender cómo personalizarlo y hacerlo funcionar con el

resto del código del proyecto.

En el ecosistema de jQuery, por ejemplo, los plugins han sido una manera muy popular de compartir soluciones

y ampliar las capacidades de la librería y, además, al estar escritos todos bajo las mismas premisas, son fáciles de

entender y de implementar.

Cada vez que queramos añadir un nuevo plugin, habrá que seguir las siguientes reglas de oro:

1. Encontrar la página web de documentación del plugin: a veces el autor del plugin ha creado un sitio

web específico para documentar el plugin, pero normalmente los encontraremos en la plataforma de

github.com.

2. Descargar los archivos del plugin: en la misma web del autor encontraremos el enlace de descarga o, si

ya estamos en GitHub, podemos descargarnos el lote entero.

3. Localizar los archivos necesarios para copiarlos en nuestro proyecto: leyendo la documentación

veremos qué .css y .js necesitaremos para hacer funcionar el plugin. Estos archivos serán los necesarios

que copiemos en la carpeta del proyecto. Normalmente, los encontramos en la carpeta /dist/.

4. Enlazar los archivos en el código HTML: es importante que el enlace a los archivos .js se hagan después

del enlace a la librería de jQuery, pero antes de nuestro documento .js donde añadimos nuestro código.

Es importante aclarar que no trabajaremos en los archivos del plugin de la misma forma que no

trabajamos en el archivo del jQuery.

5. Crear la estructura HTML: los plugins tienen una aplicación práctica sobre un contenido de nuestro

documento y debemos crearlo para ver sus resultados.

6. Inicializar el plugin: los plugins escritos por jQuery están definidos como nuevos métodos, por lo tanto,

hay que leer la documentación para ver qué nombre tienen y ver qué argumentos u opciones de

configuración tienen.

OWLCAROUSEL
Para mostrar cómo podemos emplear un plugin, explicaremos el plugin de OwlCarousel para jQuery, una librería

para poder hacer pases de diapositivas o carruseles dinámicos.

1. Página web de documentación: https://owlcarousel2.github.io/OwlCarousel2/

2. Descargar los archivos del plugin: https://github.com/OwlCarousel2/OwlCarousel2/archive/2.3.4.zip

https://owlcarousel2.github.io/OwlCarousel2/
https://github.com/OwlCarousel2/OwlCarousel2/archive/2.3.4.zip

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

63

3. Localizar los archivos necesarios: al descomprimir encontramos una carpeta /dist/ con los archivos

owl.carousel.js y owl.carousel.min.js. Como el segundo es la versión minificada del

primero, más ligera, es la que despegaremos en nuestro proyecto. Además, según la documentación,

de la carpeta /dist/assets/ necesitaremos el archivo owl.carousel.min.css por los estilos

básicos y owl.theme.default.min.css o owl.theme.green.min.css para añadir los

controladores predeterminados.

4. Enlazar los archivos: en nuestro ejemplo, quedaría algo parecido a:

<!DOCTYPE html>

<html lang="es">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Carrusel con OwlCarousel</title>

 <link rel="stylesheet" href="OwlCarousel2-2.3.4/dist/assets/owl.carousel.min.css">
 <link rel="stylesheet" href="OwlCarousel2-2.3.4/dist/assets/owl.theme.default.min.css">

 <style>

 body { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;}

 </style>

</head>

<body>

 <h1>Carrusel amb OwlCarousel</h1>

 <script src="jquery-3.7.1.min.js"></script>

 <script src="OwlCarousel2-2.3.4/dist/owl.carousel.min.js"></script>

 <script src="funcions.js"></script>

</body>

</html>

5. Crear la estructura HTML: creamos un contenedor con una lista de imágenes para mostrarlas en

carrusel:

<!DOCTYPE html>

<html lang="es">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Carrusel con OwlCarousel</title>

 <link rel="stylesheet" href="OwlCarousel2-2.3.4/dist/assets/owl.carousel.min.css">
 <link rel="stylesheet" href="OwlCarousel2-2.3.4/dist/assets/owl.theme.default.min.css">

 <style>

 body { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;}

 </style>

</head>

<body>

 <h1>Carrusel amb OwlCarousel</h1>

 <div id="galeria">

 </div>

 <script src="jquery-3.7.1.min.js"></script>

 <script src="OwlCarousel2-2.3.4/dist/owl.carousel.min.js"></script>

 <script src="funcions.js"></script>

</body>

</html>

Aquesta actuació està impulsada i subvencionada pel Servei Públic d’Ocupació de Catalunya (SOC) amb fons rebuts del Ministeri d’Educació,

Formació Professional i Esport i del Servei Públic d’Ocupació Estatal (SEPE)

64

6. Inicializar el plugin: en esta librería debemos hacer dos cosas; primero, añadir las clases css al

contenedor de galería:

 <div id="galeria" class="owl-carousel owl-theme">

 ...

 </div>

Segundo, hacer el selector del contenedor y aplicar el método del plugin en nuestro archivo funcions.js:

$(function(){

 $('#galeria').owlCarousel({

 loop:true,

 margin:10,

 nav:true,

 responsive:{

 0:{

 items:1

 },

 600:{

 items:3

 },

 1000:{

 items:5

 }

 }

 });

});

A partir de ahora, depende del autor de qué argumentos podemos añadir al método para configurar su

funcionamiento. Todas estas opciones estarán disponibles en la documentación de la web.

