1. Estructura de archivos base
Creamos una carpeta con el nombre de la plantilla y dentro creamos la siguiente estructura de archivos:

Mombre Tipo
img Carpeta de archivos
Js Carpeta de archivos
70| footer.php PHP Script
| functions.php PHP Script
7% header.php PHP Script
| indexphp PHP Script
54 screenshot.png Archive PNG
7| sidebar.php PHP Script
"E style.css Documento de hoja de estilos en cascada

La filosofia de WP es que el archivo footer.php tenga el cédigo del fin del documento, el functions.php las
funciones propias y del WP del tema, el header.php el codigo del principio del documento y el archivo
sidebar.php los contenidos de la barra lateral. La informacidn de estilos se introducird en el archivo
style.css, las imagenes las guardaremos en la carpeta img (el nombre nos lo podemos inventar) y los
archivos de javascript los almacenaremos en la carpeta js (el nombre nos lo podemos inventar).

1.1. El archivo header.php
Dentro del cddigo HTML introduciremos varios codigos PHP para llamar a las funcionalidades del WP:

1.1.1. Idioma del documento: para definir el idioma del documento como atributo de la etiqueta
<html>, llamaremos a la funcion language_attributes():

<html <?php language_attributes(); ?>>

1.1.2. Codificacion de caracteres: para saber el tipo del documento y el juego de caracteres
utilizaremos la funcion bloginfo(*html_type') para saber los diferentes tipos de informacion
consulta el siguiente enlace http://codex.wordpress.org/Function_Reference/bloginfo:

<meta http-equiv="Content-Type" content="<?php bloginfo("html_type®);
?>; charset=<?php bloginfo(“charset®); ?>" />

1.1.3. Titulo de la pagina: mediante funciones que detectan el tipo de contenido (consulta el
enlace http://codex.wordpress.org/Function_Reference) podemos especificar el titulo del

documento:

<title>

<?php if (is_home()) { bloginfo(“name"); } ?>

<?php if (is_author()) { echo "Archivo por autor®; } ?>
<?php if (is_single()) { wp_title(""); } ?>

<?php if (is_page()) { wp_title(""); } ?>

<?php if (is_category()) { single_cat_title(); } ?>
<?php if (is_month()) { the_time("F"); } ?>

<?php if (is_search()) { echo "Resultados *; } ?>
<?php if (is_tag(Q)) { single_tag_title("", true); } ?>
</title>

1.1.4. Pluginsy otra informacion de WP: para cargar los scripts de otros plugins o del propio WP
utilizamos la funcion wp_head():

<?php wp_head(); ?>

1.1.5. La hoja de estilos del tema: para cargar la hoja de estilos CSS del propio tema sin estar
pendientes de donde se ha instalado el WP, utilizamos la funcién bloginfo('stylesheet_url'):

<link rel="stylesheet" type=""text/css" href="<?php
bloginfo("stylesheet _url®); ?>'" media="all" />

1.1.6. Otros recursos del tema: para cargar otros archivos necesarios para el tema, por ejemplo
javascript, sin estar pendientes de dénde se ha instalado el WP, utilizamos la funcion
get_template_directory_uri():

<script src="<?php echo get_template_directory uri(Q);
?>/js/funciones. js" type="text/javascript'></script>

1.1.7. Mostrar el titulo del blog: para mostrar el titulo del blog introducido en el apartado de
Ajustes generales del escritorio del WP utilizamos la funcion bloginfo(‘name’), y para
afadirle el enlace a la pagina principal utilizamos la funcién bloginfo('url"):

<a href="<?php bloginfo("url®); ?>"><?php bloginfo("name®); ?>

1.1.8. Mostrar la descripcion corta: para mostrar la descripcion corta del blog introducido en el
apartado de Ajustes generales del escritorio del WP utilizamos la funcion bloginfo(
"description’):

<?php bloginfo("description”); ?>

1.1.9. Mostrar un formulario de busqueda: podemos afiadir un pequefio formulario de busqueda,
aparte del widget de Buscar. Solo hay que configurar la etiqueta <form> con los atributos
method="get" action="<?php echo home_url('/*); ?>" y el campo de entrada de texto
<input> con el atributo name="s":

<form method="'get" action="<?php echo home_url(*/%); ?>">
<input type="text" name="s" />
</form>

1.1.10. Cargar el menu: para cargar el menu utilizamos la funcién wp_nav_menu(), pero para que
esta funcion se active hay que afiadir la funcién register_nav_menu() en el archivo
function.php. En el archivo funtion.php:

<?php register_nav_menu("Principal®, "Principal®); ?>
Y en el archivo header.php:

<?php wp_nav_menu(); ?>

1.2. El archivo footer.php
Dentro del cddigo HTML introduciremos varios codigos PHP para llamar a las funcionalidades del WP:

1.2.1. Plugins y otra informacion de WP: para cargar los scripts de otros plugins o del propio WP
utilizamos la funcion wp_footer():

<?php wp_footer(); ?>

1.3. El archivo style.css

En este archivo no solo cargamos la informacion de estilos CSS de nuestro tema, sino que ademas
contiene la descripcion del tema en si, con lo que al principio del archivo introduciremos las siguientes
lineas que describen nuestro tema (el texto en cursiva es personalizable para cada tema):

/*
Theme Name: Nombre del tema

Theme URI: http://www.nuestraurl.es
Description: descripcion de nuestro tema
Author: Nuestro Nombre

Author URI: http://www. nuestraurl.es
Version: 1.0

Tags: etiquetas, que, definen, nuestro, tema
=/

1.4. Laimagen screenshot.png

Esta es la imagen de muestra de como queda nuestro tema, que se muestra en el apartado de Temas
del escritorio del WP. Las medidas habituales son 300px de ancho por 225px de alto.

1.5. El archivo index.php
Dentro del codigo HTML introduciremos varios codigos PHP para llamar a las funcionalidades del WP:

1.5.1. Cargar el archivo header.php: el primer contenido del documento index.php debe ser la
llamada a la funcién get_header() para cargar el contenido del documento header.php:

<?php get_header(); ?>

1.5.2. Cargar el archivo sidebar.php: para cargar el contenido del documento sidebar.php
utilizamos la funcién get_sidebar(). Segun la definicion de los estilos css, la llamada a la
funcién debe estar justo después de la llamada a la funcién get_header() o después de cargar
los contenidos. La ventaja de hacer la llamada aparte y no dentro del documento header.php,
es que asi podemos cargar la barra lateral o no en funcion del contenido.

<?php get_sidebar(); ?>

1.5.3. Cargar otros archivos laterales: si en nuestro tema vamos a tener varios archivos con
contenidos laterales, podemos crear tantos archivos sidebar como queramos, pero tendran
que tener como nombre la estructura sidebar-nuevonombre.php, donde nuevonombre sera
el nombre personalizado que queramos. Para cargar los nuevos sidebar pasaremos el
nuevonombre como parametro en la funcion get_sidebar():

<?php get_sidebar("nuevonombre®); ?>

1.5.4. Listar las entradas: para llamar a todas las entradas publicadas en el escritorio del WP
utilizamos la funcion have_posts(), y para consultar el contenido de la entrada individual
utilizamos la funcion the_post(). Una vez tenemos la entrada individual, con las siguientes
funciones llamamos a los diferentes contenidos de la entrada
(http://codex.wordpress.org/Template_Tags):

o Titulo de la entrada: the_title()

e URL al contenido de la entrada: the_permalink()

e El contenido de la entrada: the_content(‘Leer mas...") entre las comillas podemos
establecer el texto que hara de enlace si se ha insertado una etiqueta More

e Elextracto de la entrada: the_excerpt()

e Fecha de creacién de la entrada: the_time(get_option(‘date_format')) para ver el
formato de fecha y hora consulte el siguiente enlace:
http://codex.wordpress.org/Formatting_Date_and_Time

e Hora de creacion de la entrada: the_time(get_option(‘'time_format')) para ver el
formato de fecha y hora consulta el siguiente enlace
http://codex.wordpress.org/Formatting_Date_and Time

e Mirar si la entrada tiene una Imagen Destacada: has_post_thumbnail()

e Mostrar la Imagen Destacada: the_post_thumbnail(‘'medium') en el documento
index.php (para ver las medidas disponibles consulta el siguiente enlace
http://codex.wordpress.org/Function_Reference/the_post_thumbnail#Thumbnail_Sizes
) y add_theme_support(‘post-thumbnails’) en el documento functions.php

<?php add_theme_support("post-thumbnails®); ?>

e Mostrar el autor: the_author()

e Mostrar la(s) categoria(s) de la entrada: the_category('separador') donde separador es
el caracter que separa los nombres de las categorias. Para ver mas opciones consulta el
siguiente enlace http://codex.wordpress.org/Function_Reference/the_category

e Mostrar la(s) etiqueta(s) de la entrada: the_tags('inicio', ‘separador’, 'fin') donde inicio
es el texto que aparece antes del listado de las etiquetas, separador es el caracter que
separa los nombres de las etiquetas y fin es el texto que aparece al final del listado de
etiguetas. Para ver mas opciones consulta el siguiente enlace
http://codex.wordpress.org/Function_Reference/the_tags

e Mostrar el enlace de edicién: si hay un usuario registrado con permisos para editar las
entradas, la funcion edit_post_link() muestra un enlace para editar la entrada.

<?php
if (have_posts()) { // condicié6n si hay entradas
while (have_posts()) { // consulto cada una de las entradas
the_post(); // consulto una entrada particular y
//muestro su informacion
?>

<p><a href="<?php the_permalink(); ?>"><?php the_title();
?></p>

<?php if (has_post_thumbnail()) { ?>
<p><?php the_post_thumbnail ("medium®); ?></p>

<?php } ?>

<p><?php the_content(); ?></p>

<p>Escrito el <?php the_time(*F j Y") ?>, por <?php
the_author() ?> en <?php the_category(® "); ?>. <?php
the tags("Etiquetas: ", ", ", "."); ?> <?php edit _post_link(); ?></p>

<?php } // fin de la consulta de las entradas

} else { // si no hay entradas ?>

<p>No hay entradas para mostrar</p>

<?php } // fin de la condicién ?>

1.5.5. Cargar la navegacion de péaginas: si el nUmero de entradas supera el “Ndmero maximo de
entradas a mostrar en el sitio” configurado en los ajustes de lectura del escritorio de WP, las
funciones previous_posts_link() y next_posts_link() muestran los enlaces para ver las
anteriores o las siguientes paginas de entradas; podemos pasar como parametro el texto que
gueremos que haga de enlace:

<?php previous_posts_link("« Entradas recientes - "); ?><?php
next_posts_link("Entradas antiguas »®); ?>

1.5.6. Cargar el archivo footer.php: el ultimo contenido del documento index.php deber ser la
llamada a la funcién get_footer() para cargar el contenido del documento footer.php:

<?php get_footer(); ?>

2. El resto de archivos

Para mostrar todas las entradas, una entrada particular, una lista de entradas de una categoria, una lista de
entradas de una etiqueta, una lista de entradas por autor, una pagina o el resultado de una bisqueda, WP
utiliza un documento con un nombre concreto, y si no existe busca por defecto el archivo index.php.

El nombre de los diferentes documentos y su funcion tiene la siguiente jerarquia:

is_home() home.php

is_seach() search.php

o) —EE

is_date() date.php —
i

is_authory() author.php archive.php index.php

i cotsory)— T/ 1
is_tag() tag. php

is_single()
N, oo I,

r

2.1. Categoria individual

El archivo category.php es el que se encarga de mostrar las entradas de una categoria especifica
(cuando se enlaza desde un menu o desde el widget de Categorias). Para mostrar las entradas se utiliza
el mismo bucle que en el archivo index.php, pero ademés podemos mostrar el titulo y la descripcion de
la categoria con las funciones single_cat_title() y category_description() respectivamente:

<?php single_cat_title(); ?>
<?php echo category description(); ?>

Si queremos mostrar entradas con diferentes formatos en el archivo category.php o en el propio
index.php, WP tiene pregenerados 9 formatos mas el estandar. Para poder utilizarlos se afiade la
funcién add_theme_support() en el archivo function.php con los formatos que queramos utilizar como
parametro:

<?php add_theme_support("post-formats®, array("aside®, “gallery®, "link",
"image”, "quote®, "status”, “video", "audio®", "chat")); ?>

De esta forma se muestran en el apartado de Formato del escritorio del WP:

Formato

) Estandar
) Minientrada
@ Galeria

) Enlace

©) Imagen

O Cita

) Estado

© Video

@ Audio

@ Chat

Para cada formato diferente que definamos para las entradas, hay que crear un archivo diferente. Cada
archivo tiene como nombre una base comin y el nombre del formato separados por un guion medio [-

]:

70 formato.php PHP Script
70| formato-aside.php PHP Script
70 formato-audic.php PHP Script
70| formato-chat.php PHP Script
70| formato-gallery.php PHP Script
70| formato-link.php PHP Script
70| formato-quote.php PHP Script
70| formato-status.php PHP Script
75| formato-video.php PHP Script

El archivo que solo tiene en nombre comun sera el formato estandar. Dentro de cada archivo ponemos
el disefio y el contenido concreto para una entrada, con las funciones que se ponen después de la
funcién the_post() vistas en el punto 1.5.4.

Finalmente, en el archivo index.php, después de la llamada a la funcién the_post(), llamamos a la
funcién get_template_part() especificando el nombre de base comdn de los archivos con los formatos
creados:

<?php get_template_part("formato®, get_post_format()); ?>

2.2. Etiqueta individual

El archivo tag.php es el que se encarga de mostrar las entradas de una etiqueta especifica (cuando se
enlaza desde un menu o desde el widget de Nube de etiquetas). Para mostrar las entradas se utiliza el
mismo bucle que en el archivo index.php o category.php, pero ademas podemos mostrar el titulo y la
descripcion de la etiqgueta con las funciones single_cat title() y category_description()
respectivamente (igual que en category.php):

<?php single_cat_title(); ?>
<?php echo category description(); ?>
Si estamos utilizando formatos de entrada, también utilizamos la funcion get_template_part() para

mostrar en el bucle los diferentes formatos.

2.3.Entrada individual

El archivo single.php es el que se encarga de mostrar el contenido de una entrada individual. La
estructura del codigo puede ser la misma que la del index.php o del category.php, es decir, también
podemos utilizar archivos para los diferentes formatos de entrada.

Para afiadir los enlaces para las entradas anteriores y siguientes, utilizamos las funciones
previous_post_link() y next_post_link() respectivamente:

<?php
// NAVEGACION ENTRE ENTRADAS
if (is_single(Q) {

?>

<section class="navegacion'><?php previous_post_link("«
%link®, "Anterior™); ?> - <?php next_post_link(*%link »","Siguiente®);

?></section>

<?php } ?>

Para ver todas las opciones consulta los siguientes enlaces
http://codex.wordpress.org/Function_Reference/previous post_link y

http://codex.wordpress.org/Function Reference/next post link

Ademas, después de mostrar el contenido podemos afiadir la funcién comments_template() para
mostrar todo el apartado de comentarios:

<?php comments_template(); ?>

En el punto 6 se explica como cambiar la apariencia los comentarios.

2.4.Pagina individual
El archivo page.php es el que se encarga de mostrar el contenido de una pagina. La estructura del
cddigo puede ser la misma que la del index.php.

Si gqueremos mostrar paginas con diferentes disefios, podemos crear diferentes plantillas para las
paginas creando archivos gque se llamen nombreplantilla.php, donde nombreplantilla es un nombre que
nos podemos inventar. Dentro de este archivo, las primeras lineas deben ser:
<?php
/*
Template Name: Nueva Plantilla
*/
?>

Donde Nueva Plantilla es el nombre que aparecera en el apartado de Atributos de pagina de escritorio
de WP:

Atributos de pagina
Plantilla
Plantilla predeterminada |Z|

_Plantilla predeterminada
MNueva Plantilla

0

iMecesitas ayuda? Usa la pestafia Ayuda en
la parte superior derecha de la pantalla.

Y el resto del cédigo sigue la misma estructura que page.php o index.php

3. Modificar las consultas

Podemos utilizar la funcién query_posts() antes de la funcién have_posts() para modificar qué entradas se
cargan a continuacion; para ver todas las opciones consulta el siguiente enlace
http://codex.wordpress.org/Function_Reference/query_posts:

<?php query_posts("category_name=blog"); ?>
Una vez finalizado el bucle, hay que utilizar la funcion wp_reset_query() para restaurar las consultas.

<?php wp_reset_query(); ?>

4. Crear nuevos menus

4.1. Trabajar con un solo menu:

Si queremos modificar el mend del tema, primero tendemos que modificar la funcion
register_nav_menu() en el archivo functions.php. Esta funcion necesita dos parametros: la localizacion
y la descripcion. Ambos son nombres que nos podemos inventar (si utilizamos acentos y caracteres
latinos antes deberemos asegurarnos que el archivo functions.php esta codificado en UTF-8). Por
ejemplo:

register_nav_menu("Principal®,"Menu Principal®);
Y en el archivo donde queramos que salga el mend (normalmente el header.php) llamamos a la funcién

wp_nav_menu().

4.2. Trabajar con varios menus:

Si queremos poner varias zonas de menus en nuestro tema, utilizamos la funcién register_nav_menus()
en el archivo functions.php. Esta funcion tiene como parametro un array asociativo con los nombres de
las posiciones y sus descripciones:

<?php

register_nav_menus(array(
"top" => "Menu Superior”,
"left®™ => "Menu lzquierda“,

"bottom®™ => "Menu Inferior

)):;

?>

El nombre de la descripcion (Menu Superior, Menu Izquierda, Men Inferior) aparece en el escritorio de
WP para poder asignar los menus que se creen en las diferentes posiciones:

|:; Menus

Ubicacién del tema

Menti zquierda

E E

El nombre la posicion (top, left y bottom) se utiliza como parametro en la funcion wp_nav_menu()
para mostrar el menu seleccionado en los archivos del tema (normalmente en el header.php):

<?php wp_nav_menu(array("theme_location®™ => “top”)); ?>
Para ver el resto de pardmetros disponibles consulta el siguiente enlace

http://codex.wordpress.org/Function_Reference/wp_nav_menu.

Entre los diferentes parametros para afiadir a la funcion wp_nav_menu() esta disponible el parametro
walker, que permite modificar la construccion del menu. Por ejemplo, se puede afiadir la clase “flecha”
a los elementos que tengan submenus: en el archivo de functions.php afiadimos una nueva clase
Flechas_Menu:

class Flechas_Menu extends Walker_Nav_Menu{

public function display_element($el, &$children, $max_depth, $depth = 0,
$args, &$output){

$id = $this->db_fields["id"];
if(isset($children[$el->%id]))
$el->classes[] = "flecha";

parent: :display_element($el, $children, $max_depth, $depth, $args,
$output);

}
}

Y en el archivo header.php, en la llamada a la funcion wp_nav_menu(), afiadimos el pardmetro walker:

<?php wp_nav_menu(array("theme_location®™ => "top”", “"walker®™ => new
Flechas_MenuQ))); ?>

5. Aiadir zonas para widgets

Para poder afadir widgets a nuestro tema, primero hay que especificar qué areas para widgets tendra el
tema en el archivo functions.php con la funcion register_sidebar(), pasando como parametros el nombre
del areay el cédigo HTML que se genera.

register_sidebar(array(

"name® => “Lateral",

"before_widget®™ => "<div class="widget'>",
"after_widget™ => “</div>",

"before_title™ => "<h3>",

"after_title® => "</h3>",

));

Para cada region de widgets afiadiremos una nueva llamada a la funcion register_sidebar() cambiando el
nombre al parametro name. Para ver el resto de pardmetros disponibles consulta el siguiente enlace
http://codex.wordpress.org/Function_Reference/register_sidebar.

Una vez registrado el area para widgets del escritorio, llamamos a los widgets cargados en esa area con la
funcién dynamic_sidebar() en el archivo sidebar.php:

<?php dynamic_sidebar("Lateral®); ?>

6. Modificar la apariencia de los comentarios
Si queremos personalizar la apariencia de los comentarios que se muestran con la funcion
comments_template(), debemos afiadir en el archivo style.css los estilos CSS correspondientes:

/* Comentarios */

ol .commentlist {}

ol .commentlist Ii {}
.comment-author {}

-comment-author img {}

-fn {3

.says {}

-comment-meta {}
-comment-awaiting-moderation {}
-comment-meta a {}

ol _.commentlist 11 p {}

-reply a {}

También podemos modificar la estructura de la informacién de los comentarios si a la funcién
comments_template() le pasarnos como parametro el nombre del archivo que tiene la nueva estructura de
comentarios precedido por una barra “/” (por defecto llama a /comments.php):

<?php comments_template("/comentarios.php®); ?>

En el archivo comentarios.php modifico el formulario de envio de comentario para que parezca un
formulario de contacto mostrando solo el formulario y no la lista de comentarios:

<?php

$campos = array(

"author® => "<p class="comment-form-author'>" . "<label
for="nombre">Nombre</label> * <input id="nombre"
name=""author"™ type=""text" value="" size="30"" . $aria_req . " /></p>",

"email®™ => "<p class="comment-form-email"><label for="email">E-mail</label>
* <input id="email”™ name="email’ type=""text"
value=""" size="30"" . $aria_req . " /></p>",

“url” => "<p class=""comment-form-tel'><label for="tel">Teléfono</label> * <input id="tel" name="url" type="text" value=""
size="30"" . $aria_req . " /></p>",

)

$param = array(

“"title_reply"=>"<h4>Contacte con nosotros</h4>",

"comment_notes_before®™ => "<small>Los campos necesarios estan marcados
*_</small>",

“"fields® => $campos,
"comment_notes_after” => "",
"label_submit®™ => “Enviar”
)

comment_form($param);

?>

Para mostrar el formulario de contacto se utiliza la funcién comment_form(), que admite parametros para
modificar su apariencia. Para ver el resto de parametros disponibles consulta el siguiente enlace
http://codex.wordpress.org/Function_Reference/comment_form

7. Configurar la cabecera
Para dejar la opcion de configurar la cabecera del tema se utiliza la funciéon add_theme_support(‘custom-
header") en el archivo functions.php. Nota: esta funcién esta disponible desde la versién 3.4.

<?php

global $wp_version;

if (version_compare($wp_version, "3.4%, ">=%))
add_theme_support("custom-header®);

?>

Y en el archivo header.php comprobar si se ha cargado una imagen desde el escritorio de WP con la funcion
get _header_image() y recoger la ruta de la misma con la funcion header_image().

<?php
$imagen_cabecera = get _header_image();

it (! empty($imagen_cabecera)) {?>

<p><a href="<?php bloginfo(“url®); ?>/"><img src="<?php header_image();
?>" alt="<?php bloginfo("name®); ?>" title="<?php bloginfo("name®); ?>"
/></p>
<?php } ?>

Para mostrar el titulo del blog del color configurado en el escritorio del WP, afiadimos la clase “titulo” al
enlace en el archivo header.php:

<a href="<?php bloginfo("url®); ?>/" class="titulo"><?php bloginfo("name®);
?>

En el mismo archivo header.php, debajo de la llamada a la hoja de estilos del tema (ver punto 1.1.5),
afladimos una modificacion a la hoja de estilos utilizando la funcion get_header_textcolor() para consultar
el color y la funcién header_textcolor() para mostrarlo:

<?php if (is_string(get_header_textcolor()) and get header_textcolor() !=
"blank®) { ?>

<style type="text/css">
a.titulo {color:#<?php header_textcolor(); ?>;}
</style>

<?php } 2>

